MATH 204B, WINTER 2019

NUMBER THEORY II, HW 4

Due Wednesday February 6th in class (or by noon).

From Neukirch's book Algebraic Number Theory:

• Exercises:

7 on page 115; 1 and 2 on pages 165-166

Problem A. Let K be a field equipped with a non-archimedean absolute value $|\cdot|$ which we assume is non-trivial. We endow the vector space of polynomials K[t] with the norm $\|\cdot\|$ defined as follows.

$$||f|| = \max\{|a_0|, |a_1|, \dots, |a_n|\}$$
 $f = a_0 + a_1t + \dots + a_nt^n$.

(a) Show that $\|\cdot\|$ is multiplicative; meaning that $\forall f,g\in K[t]$ we have

$$||fg|| = ||f|| \cdot ||g||.$$

(Hint: Adapt the proof of the Gauss Lemma about contents.)

- (b) Check that $\|\cdot\|$ extends uniquely to an absolute value on the field K(t) of rational functions.
- (c) Is K(t) complete? Prove it or give a divergent Cauchy sequence.

Problem B. Consider the field $F = \mathbb{F}_p(t)$ with the absolute value $|\cdot|_t$ and its completion $\hat{F} = \mathbb{F}_p((t))$; the field of formal Laurent series over \mathbb{F}_p .

- (a) Argue that F is countable but \hat{F} is uncountable. Deduce that \hat{F} is not an algebraic extension of F.
- (b) Choose an element $\gamma \in \hat{F}$ which is transcendental over F and let

$$E = F(\gamma)$$
 $K = F(\gamma^p).$

Observe that the field extension E/K is purely inseparable of degree p.

(c) Show that E and K have the same closures in $\hat{F}.$ More precisely that

$$\hat{K} = \hat{E} = \hat{F}.$$

(This example shows that it can happen that a non-trivial field extension collapses upon completion.)