Problem A. Let K be a field equipped with a non-archimedean absolute value $|\cdot|$ which we assume is non-trivial. We endow the vector space of polynomials $K[t]$ with the norm $\|\cdot\|$ defined as follows.

$$\|f\| = \max\{|a_0|, |a_1|, \ldots, |a_n|\} \quad f = a_0 + a_1 t + \cdots + a_n t^n.$$

(a) Show that $\|\cdot\|$ is multiplicative; meaning that $\forall f, g \in K[t]$ we have

$$\|fg\| = \|f\| \cdot \|g\|.$$

(Hint: Adapt the proof of the Gauss Lemma about contents.)

(b) Check that $\|\cdot\|$ extends uniquely to an absolute value on the field $K(t)$ of rational functions.

(c) Is $K(t)$ complete? Prove it or give a divergent Cauchy sequence.

Problem B. Consider the field $F = \mathbb{F}_p(t)$ with the absolute value $|\cdot|_t$ and its completion $\hat{F} = \mathbb{F}_p((t))$; the field of formal Laurent series over \mathbb{F}_p.

(a) Argue that F is countable but \hat{F} is uncountable. Deduce that \hat{F} is not an algebraic extension of F.

(b) Choose an element $\gamma \in \hat{F}$ which is transcendental over F and let

$$E = F(\gamma) \quad K = F(\gamma^p).$$

Observe that the field extension E/K is purely inseparable of degree p.
(c) Show that E and K have the same closures in \hat{F}. More precisely that

$$\hat{K} = \hat{E} = \hat{F}.$$

(This example shows that it can happen that a non-trivial field extension collapses upon completion.)