Due Wednesday February 20th in class (or by noon).

From Neukirch's book Algebraic Number Theory:

- Exercises:

3 on page 159 (assume L / K are local fields); 3 on page 176

Problem A. Here we show $\overline{\mathbb{Q}}_{p}$ is not complete relative to $|\cdot|_{p}$.
(a) Let $\mathbb{Q}_{p^{n}}$ be the unramified extension of \mathbb{Q}_{p} of degree $n!$. (From class we know that $\mathbb{Q}_{p^{n!}}=\mathbb{Q}_{p}\left(\xi_{n}\right)$ where $\xi_{n} \in \overline{\mathbb{Q}}_{p}$ is a primitive $\left(p^{n!}-1\right)$-st root of unity.) Check that $\mathbb{Q}_{p^{n!}} \subset \mathbb{Q}_{p^{(n+1)}}$ for all n.
(b) Let s_{n} be the n-th partial sum of the infinite series $\sum_{i=0}^{\infty} \xi_{i} p^{i}$. Verify that $s_{n} \in \mathbb{Q}_{p^{n!}}$, and that the sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in $\overline{\mathbb{Q}}_{p}$.
(c) Suppose $s_{n} \rightarrow \alpha \in C$. Use Krasner's Lemma to see that $\mathbb{Q}_{p}\left(s_{n}\right)=\mathbb{Q}_{p}(\alpha)$ for all n sufficiently large. Deduce that $\alpha \in \mathbb{Q}_{p^{n!}}$ for such n.
(d) Fix a large n as in (c) and argue that α has a p-expansion $\alpha=\sum_{i=0}^{\infty} c_{i} p^{i}$ in $\mathbb{Q}_{p^{n}}$ whose coefficients are either 0 or powers of ξ_{n}.
(e) For $m>n$ compare the two expansions of α modulo p^{m+1} and infer that $\xi_{i}=c_{i}$ for all $i \leq m$. (Observing that $\left\langle\xi_{i}\right\rangle \subset\left\langle\xi_{m}\right\rangle$ may be helpful.)
(f) Get the contradiction $\mathbb{Q}_{p^{m!}}=\mathbb{Q}_{p^{n!}}$.

Problem B. In continuation of Problem A we show that the p-adic completion $\mathbb{C}_{p}=\hat{\overline{\mathbb{Q}}}_{p}$ is algebraically closed.
(a) Let $f \in \mathbb{C}_{p}[X]$ be monic and irreducible. Spell out why $\forall \delta>0$ there is a monic polynomial $g \in \overline{\mathbb{Q}}_{p}[X]$ of the same degree such that $\|f-g\|<\delta$.
(b) As explained in class this implies g is irreducible if δ is small enough, and that g moreover has the root exchange property: For any root $\alpha \in \overline{\mathbb{C}}_{p}$ of f there is a root $\beta \in \overline{\mathbb{C}}_{p}$ of g such that $\mathbb{C}_{p}(\alpha)=\mathbb{C}_{p}(\beta)$.

- conclude that $\alpha \in \mathbb{C}_{p}$.

Problem C. (Will not be graded.) Let K be a non-archimedean local field with valuation ring R, and normalized ${ }^{1}$ absolute value $\|\cdot\|_{K}$. Let μ be the Haar measure on K with $\mu(R)=1$. Show that $\mu(x R)=\|x\|_{K}$ for all $x \in K$.

[^0]
[^0]: ${ }^{1}$ That is $\|x\|_{K}=q^{-v_{K}(x)}$ where q is the size of the residue field.

