MATH 204B, WINTER 2019

NUMBER THEORY II, HW 6

Due Wednesday February 20th in class (or by noon).

From Neukirch's book Algebraic Number Theory:

• Exercises:

3 on page 159 (assume L/K are local fields); 3 on page 176

Problem A. Here we show $\overline{\mathbb{Q}}_p$ is <u>not</u> complete relative to $|\cdot|_p$.

- (a) Let $\mathbb{Q}_{p^{n!}}$ be the unramified extension of \mathbb{Q}_p of degree n!. (From class we know that $\mathbb{Q}_{p^{n!}} = \mathbb{Q}_p(\xi_n)$ where $\xi_n \in \overline{\mathbb{Q}}_p$ is a primitive $(p^{n!} 1)$ -st root of unity.) Check that $\mathbb{Q}_{p^{n!}} \subset \mathbb{Q}_{p^{(n+1)!}}$ for all n.
- (b) Let s_n be the *n*-th partial sum of the infinite series $\sum_{i=0}^{\infty} \xi_i p^i$. Verify that $s_n \in \mathbb{Q}_{p^{n!}}$, and that the sequence $(s_n)_{n \in \mathbb{N}}$ is Cauchy in $\overline{\mathbb{Q}}_p$.
- (c) Suppose $s_n \to \alpha \in C$. Use Krasner's Lemma to see that $\mathbb{Q}_p(s_n) = \mathbb{Q}_p(\alpha)$ for all *n* sufficiently large. Deduce that $\alpha \in \mathbb{Q}_{p^{n!}}$ for such *n*.
- (d) Fix a large *n* as in (c) and argue that α has a *p*-expansion $\alpha = \sum_{i=0}^{\infty} c_i p^i$ in $\mathbb{Q}_{p^{n!}}$ whose coefficients are either 0 or powers of ξ_n .
- (e) For m > n compare the two expansions of α modulo p^{m+1} and infer that $\xi_i = c_i$ for all $i \leq m$. (Observing that $\langle \xi_i \rangle \subset \langle \xi_m \rangle$ may be helpful.)
- (f) Get the contradiction $\mathbb{Q}_{p^{m!}} = \mathbb{Q}_{p^{n!}}$.

Problem B. In continuation of Problem A we show that the *p*-adic completion $\mathbb{C}_p = \hat{\mathbb{Q}}_p$ is algebraically closed.

- (a) Let $f \in \mathbb{C}_p[X]$ be monic and irreducible. Spell out why $\forall \delta > 0$ there is a monic polynomial $g \in \overline{\mathbb{Q}}_p[X]$ of the same degree such that $\|f g\| < \delta$.
- (b) As explained in class this implies g is irreducible if δ is small enough, and that g moreover has the root exchange property: For any root $\alpha \in \overline{\mathbb{C}}_p$ of f there is a root $\beta \in \overline{\mathbb{C}}_p$ of g such that $\mathbb{C}_p(\alpha) = \mathbb{C}_p(\beta)$.
 - conclude that $\alpha \in \mathbb{C}_p$.

Problem C. (Will <u>not</u> be graded.) Let K be a non-archimedean local field with valuation ring R, and normalized¹ absolute value $\|\cdot\|_K$. Let μ be the Haar measure on K with $\mu(R) = 1$. Show that $\mu(xR) = \|x\|_K$ for all $x \in K$.

¹That is $||x||_K = q^{-v_K(x)}$ where q is the size of the residue field.