Math 204B, Winter 2019
Number Theory II, HW 7

Due Wednesday February 27th in class (or by noon).

## From Neukirch's book Algebraic Number Theory:

- Exercises:

2, 4, 5 on page 142

Problem A. Here we show that $\mathbb{Q}_{p}$ has only finitely many extensions of a given degree (in a fixed algebraic closure $\overline{\mathbb{Q}}_{p}$ ).
(a) Reduce the question to showing that any finite extension $K / \mathbb{Q}_{p}$ only has finitely many totally ramified extensions $E / K$ of a given degree $n$.
(b) As shown in class any such $E / K$ is of the form $E=K(\Pi)$ where $\Pi \in E$ is a uniformizer. Furthermore the minimal polynomial of $\Pi$ is an Eisenstein polynomial:

$$
f(X)=X^{n}+\pi a_{n-1} X^{n-1}+\cdots+\pi a_{1} X+\pi a_{0}, \quad n=[E: K] .
$$

Here $\pi \in K$ is a choice of uniformizer; all $a_{i} \in R$ and $a_{0} \in R^{\times}$.

- deduce that there is an $n$-to-one map from pairs $(E, \Pi)$ onto $R^{n-1} \times R^{\times}$.
(c) Show that the inverse image of $\left(a_{n-1}, \ldots, a_{1}, a_{0}\right)$ gives rise to the same fields $E$ as the inverse image of any close enough tuple $\left(b_{n-1}, \ldots, b_{1}, b_{0}\right)$. (Hint: Krasner's lemma; or rather a consequence thereof from class.)
(d) Using the compactness of $R^{n-1} \times R^{\times}$deduce that there are only finitely many totally ramified $E / K$ of degree $n$.

Problem B. Let $k$ be any field of characteristic $p>0$. Here we show that $K=k((t))$ has infinitely many separable extensions of degree $p$ (in a fixed separable closure $\left.K^{\text {sep }}\right)$.
(a) Consider the rational functions $\frac{1}{t^{n}}$ with $n>0$ prime-to- $p$. Suppose $n>n^{\prime}$ and

$$
\frac{1}{t^{n}}-\frac{1}{t^{n^{\prime}}}=f^{p}-f, \quad f \in K
$$

Argue that $f \notin k \llbracket t \rrbracket$ - in other words that $v_{K}(f)<0$.
(b) In continuation of (a) check that

$$
-n=v_{K}\left(f^{p}-f\right)=\min \left\{v_{K}\left(f^{p}\right), v_{K}(f)\right\}=p v_{K}(f)
$$

which contradicts the assumption $p \nmid n$.
(c) Conclude that $K$ has infinitely many $p$-extensions in $K^{\text {sep }}$. (Hint: Use Artin-Schreier theory. By (b) the additive group $K / \wp(K)$ is infinite, where $\wp(f)=f^{p}-f$ is the Artin-Schreier operator $\wp: K \rightarrow K$.)
(d) Assuming $k$ is finite (so that $K$ is a local field) adapt the strategy of Problem A to show that $K$ has only finitely many tamely ramified extensions in $K^{\text {sep }}$ of any given degree. (Hint: Separability of Eisenstein polynomials is what allows you to use Krasner's lemma.)

