MATH 204B, WINTER 2019

NUMBER THEORY II, HW 7

Due Wednesday February 27th in class (or by noon).

From Neukirch's book Algebraic Number Theory:

• Exercises:

2, 4, 5 on page 142

Problem A. Here we show that \mathbb{Q}_p has only finitely many extensions of a given degree (in a fixed algebraic closure $\overline{\mathbb{Q}}_p$).

- (a) Reduce the question to showing that any finite extension K/\mathbb{Q}_p only has finitely many totally ramified extensions E/K of a given degree n.
- (b) As shown in class any such E/K is of the form $E = K(\Pi)$ where $\Pi \in E$ is a uniformizer. Furthermore the minimal polynomial of Π is an Eisenstein polynomial:

$$f(X) = X^{n} + \pi a_{n-1} X^{n-1} + \dots + \pi a_{1} X + \pi a_{0}, \qquad n = [E:K].$$

Here $\pi \in K$ is a choice of uniformizer; all $a_i \in R$ and $a_0 \in R^{\times}$.

- deduce that there is an *n*-to-one **map** from pairs (E, Π) onto $R^{n-1} \times R^{\times}$.

- (c) Show that the inverse image of (a_{n-1},..., a₁, a₀) gives rise to the same fields E as the inverse image of any close enough tuple (b_{n-1},..., b₁, b₀). (Hint: Krasner's lemma; or rather a consequence thereof from class.)
- (d) Using the compactness of $R^{n-1} \times R^{\times}$ deduce that there are only finitely many totally ramified E/K of degree n.

Problem B. Let k be any field of characteristic p > 0. Here we show that K = k((t)) has infinitely many separable extensions of degree p (in a fixed separable closure K^{sep}).

(a) Consider the rational functions $\frac{1}{t^n}$ with n > 0 prime-to-*p*. Suppose n > n' and

$$\frac{1}{t^n} - \frac{1}{t^{n'}} = f^p - f, \qquad f \in K.$$

Argue that $f \notin k[t]$ – in other words that $v_K(f) < 0$.

(b) In continuation of (a) check that

$$-n = v_K(f^p - f) = \min\{v_K(f^p), v_K(f)\} = pv_K(f)$$

which contradicts the assumption $p \nmid n$.

- (c) Conclude that K has infinitely many p-extensions in K^{sep} . (Hint: Use Artin-Schreier theory. By (b) the additive group $K/\wp(K)$ is infinite, where $\wp(f) = f^p f$ is the Artin-Schreier operator $\wp : K \to K$.)
- (d) Assuming k is finite (so that K is a local field) adapt the strategy of Problem A to show that K has only finitely many **tamely** ramified extensions in K^{sep} of any given degree. (Hint: Separability of Eisenstein polynomials is what allows you to use Krasner's lemma.)