MATH 204B, WINTER 2019

NUMBER THEORY II, HW 8

Due Wednesday March 6th in class (or by noon).

From Neukirch's book Algebraic Number Theory:

• Exercises:

1 on page 142 (note that $\frac{1}{1-p}$ should be $\frac{1}{p-1}$ here. Hint: Set $\log(p) = 0$)

Problem A. (This exercise should have been assigned weeks ago.) Let E/K be a finite extension of local fields with uniformizers π and Π . Thus $\pi \sim \Pi^e$ where e = e(E/K) is the ramification index. Let f = f(E/K) be the inertia degree.

- (a) Suppose β_1, \ldots, β_r are elements of R_E whose reductions modulo π span $R_E/\pi R_E$ as a k-vector space $(k = R/\pi R)$. Show that β_1, \ldots, β_r generate R_E as an R-module. (Hint: $R_E = M + \pi R_E$ where $M = R\beta_1 + \cdots + R\beta_r$.)
- (b) Suppose $\alpha_1, \ldots, \alpha_f$ are elements of R_E whose reductions modulo Π form a k-basis for k_E . Using part (a) show that the set of elements

$$\alpha_i \Pi^j$$
 $(i = 1, \dots, f \quad j = 0, \dots, e-1)$

form an *R*-basis for R_E .

(c) Conclude that R_E is a free *R*-module of rank [E:K].

Problem B. Let E/K be a finite Galois extension of local fields with Galois group G = Gal(E/K) and higher ramification groups

$$G_i = \{ \sigma \in G : v_E(\sigma(x) - x) > i \ \forall x \in R_E \}.$$

Our goal is to show $G_i = \{1\}$ for all sufficiently large *i*.

(a) Suppose x_1, \ldots, x_r generate R_E as an *R*-module (cf. Problem A). Check that $\sigma \in G$ lies in the *i*th ramification group G_i if and only if

$$v_E(\sigma(x_s) - x_s) > i \qquad \forall s = 1, \dots, r.$$

(b) Choose an $N \in \mathbb{N}$ bigger than all finite valuations $v_E(\sigma(x_s) - x_s)$ where $\sigma \in G$ and $s = 1, \ldots, r$ vary. Argue that

$$G_i = \{1\} \qquad \forall i \ge N$$

(Hint: $\sigma \in G_N$ must fix all the x_s since $v_E(\sigma(x_s) - x_s)$ would have to be infinite.)

(c) Fill in the details of the following alternative argument: Since G is finite the G_i become stationary. Furthermore $\bigcap_{i>0} G_i = \{1\}$ since an element thereof acts trivially on $R_E = \lim_{i \to \infty} R_E / \mathfrak{m}_E^{i+1}$. Thus $G_i = \{1\}$ for $i \gg 0$.

Problem C. Let \mathbb{Q}_p^{ur} be the maximal unramified extension of \mathbb{Q}_p in some fixed algebraic closure $\overline{\mathbb{Q}}_p$.

- (a) Why is $\mathbb{Q}_p^{\mathrm{ur}}$ <u>not</u> complete? (Use Problem A on HW6.)
- (b) Show that its completion $\widehat{\mathbb{Q}_p^{\mathrm{ur}}} \subset \mathbb{C}_p$ has a valuation ring $\widehat{\mathbb{Z}_p^{\mathrm{ur}}}$ which is complete, with p as a uniformizer, and it has residue field¹

$$\widehat{\mathbb{Z}_p^{\mathrm{ur}}}/(p) \xrightarrow{\sim} \overline{\mathbb{F}}_p.$$

(c) Prove that Gal(Q^{ur}_p/Q_p) is topologically generated by Frobenius (i.e., the subgroup generated by the Frobenius automorphism is dense):

$$\operatorname{Gal}(\mathbb{Q}_p^{\mathrm{ur}}/\mathbb{Q}_p) \xrightarrow{\sim} \operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) = \hat{\mathbb{Z}}.$$

(Here $\hat{\mathbb{Z}} = \underline{\lim} \mathbb{Z}/n\mathbb{Z}$ is the profinite completion of the integers.)

Problem D. Let $\mathbb{Q}_p^{\text{tr}} \supset \mathbb{Q}_p^{\text{ur}}$ be the union of all tamely ramified finite extensions of \mathbb{Q}_p in some fixed algebraic closure $\overline{\mathbb{Q}}_p$.

- (a) For each n > 0 let $\pi_n \in \overline{\mathbb{Q}}_p$ be a root of the polynomial $X^{p^n-1} + p$. Show that $\mathbb{Q}_{p^n}(\pi_n)$ is a totally and tamely ramified degree $p^n - 1$ extension of \mathbb{Q}_{p^n} – which is independent of the choice of root π_n .
- (b) Deduce that $\mathbb{Q}_{p^n}(\pi_n)$ is the splitting field of $X^{p^n-1}+p \in \mathbb{Z}_{p^n}[X]$ (therefore Galois) with Galois group

$$\operatorname{Gal}(\mathbb{Q}_{p^n}(\pi_n)/\mathbb{Q}_{p^n}) \xrightarrow{\sim} \mu_{p^n-1}(\overline{\mathbb{Q}}_p) \xrightarrow{\sim} \mathbb{F}_{p^n}^{\times}.$$

(Send σ to the ratio $\frac{\sigma(\pi_n)}{\pi_n}$ and then reduce modulo p.)

¹Meaning $\widehat{\mathbb{Z}_p^{\mathrm{ur}}}$ is the ring of Witt vectors $W(\bar{\mathbb{F}}_p)$ of the characteristic p perfect field $\bar{\mathbb{F}}_p$.

- (c) For n = 1 observe that $\mathbb{Q}_p(\pi_1) = \mathbb{Q}_p(\zeta_p)$. (Use Problem B on HW5.)
- (d) Verify that $\mathbb{Q}_p^{\mathrm{tr}} = \bigcup_{n>0} \mathbb{Q}_{p^n}(\pi_n)$ and conclude that there is an isomorphism of topological groups

$$\operatorname{Gal}(\mathbb{Q}_p^{\operatorname{tr}}/\mathbb{Q}_p^{\operatorname{ur}}) \xrightarrow{\sim} \varprojlim \mathbb{F}_{p^n}^{\times}$$

where the transition map $\mathbb{F}_{p^n}^{\times} \to \mathbb{F}_{p^m}^{\times}$ is the norm map for m|n.

(e) Infer that $P = \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p^{\operatorname{tr}})$ is the unique Sylow pro-*p* subgroup (meaning the largest pro-*p* subgroup) of the inertia group $I = \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p^{\operatorname{ur}})$.

(Hint: Let P be any maximal pro-p subgroup. Try to show $\mathbb{Q}_p^{\text{tr}} = \overline{\mathbb{Q}}_p^P$. The inclusion \subset essentially follows from (d). For \supset observe that $\overline{\mathbb{Q}}_p^P$ is the smallest subfield of $\overline{\mathbb{Q}}_p$ with a pro-p Galois group.)