MATH 204B, WINTER 2019

NUMBER THEORY II, HW 9

Due Wednesday March 13th in class (or by noon).

From Neukirch's book Algebraic Number Theory:

- Exercises:
 - 1 on page 181

(Hint: Recall that a $\sigma \in G_0$ lies in G_i if and only if $v(\sigma(\Pi)/\Pi - 1) \ge i$. Taking $\Pi = \zeta - 1$ reduces the problem to reading off the valuation $v(\zeta^N - 1)$ from the *p*-expansion of *N*.)

Problem A. Let K be a field, and let $\operatorname{Gal}_K = \operatorname{Gal}(K^{\operatorname{sep}}/K)$ be its absolute Galois group (with the Krull topology).

(a) Show that $\operatorname{GL}_n(\mathbb{C})$ has "no small subgroups" – meaning the identity matrix I has an open neighborhood which does not contain any non-trivial subgroup.

(Hint: First do this for \mathbb{C}^{\times} . In general, if $||A - I|| < \epsilon$ then all eigenvalues λ of A satisfy $|\lambda - 1| < \epsilon$. Therefore, if all powers A^N also lie in the ϵ -ball we must have $\lambda = 1$, i.e. A is at least unipotent. However, since the A^N remain bounded we conclude that A = I.)

- (b) Deduce from (a) that any continuous representation $\operatorname{Gal}_K \to \operatorname{GL}_n(\mathbb{C})$ factors through $\operatorname{Gal}(E/K)$ for some finite Galois extension E/K. When n = 1 check that one can take E/K to be an abelian extension.
- (c) Let n = 1 and suppose K is a non-archimedean local field. Explain why composition with the Artin map ϕ_K defines a bijection

{continuous characters $\operatorname{Gal}_K \to \mathbb{C}^{\times}$ } $\stackrel{\text{(i:1)}}{\longleftrightarrow}$

{continuous characters $K^{\times} \to \mathbb{C}^{\times}$ of **finite** order}.

(It sends $\chi \mapsto \chi^{ab} \circ \phi_K$ where χ^{ab} is the character of $\operatorname{Gal}_K^{ab}$ given by χ .)

Problem B. Let K/\mathbb{Q}_p be a finite extension, with absolute Galois group Gal_K . The cyclotomic character $\chi_{\operatorname{cyc}} : \operatorname{Gal}_{\mathbb{Q}_p} \to \mathbb{Z}_p^{\times}$ is the projection onto

$$\operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^{\infty}})/\mathbb{Q}_p) = \varprojlim \operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^n})/\mathbb{Q}_p) \simeq \varprojlim (\mathbb{Z}/p^n \mathbb{Z})^{\times} = \mathbb{Z}_p^{\times}.$$

Its restriction to $\operatorname{Gal}_K \subset \operatorname{Gal}_{\mathbb{Q}_p}$ will also be denoted by $\chi_{\operatorname{cyc}}$.

- (a) Check that $\chi_{\text{cyc}} : \text{Gal}_K \to \mathbb{Z}_p^{\times}$ is continuous, but <u>not</u> of finite order.
- (b) Consider the composition $\chi^{ab}_{cyc} \circ \phi_K$, which is the character $K^{\times} \to \mathbb{Z}_p^{\times}$ corresponding to χ_{cyc} via class field theory. Verify that

$$(\chi_{\rm cvc}^{\rm ab} \circ \phi_K)(x) = N_{K/\mathbb{Q}_p}(x) \cdot \|x\|_K \qquad \forall x \in K^{\times}$$

where $\|\cdot\|_{K}$ is the normalized absolute value on K.

(Hint: Reduce to the case $K = \mathbb{Q}_p$ utilizing that Artin maps are compatible with norm maps. To see that $p \mapsto 1$ write p as a norm from $\mathbb{Q}_p(\zeta_{p^n})$. Finally check that a unit $u \in \mathbb{Z}_p^{\times}$ is mapped to itself using $\mathbb{Z}_p^{\times} \xrightarrow{\sim} I_{\mathbb{Q}_p}^{\mathrm{ab}}$.)

Problem C. Let K be a non-archimedean local field. The Weil group $W_K \subset$ Gal_K consists of the automorphisms which act as \mathbb{Z} -powers of Frobenius on the residue field. Thus it sits in a short exact sequence

$$0 \longrightarrow I_K \longrightarrow W_K \longrightarrow \mathbb{Z} \longrightarrow 0 \tag{1}$$

where $I_K = \operatorname{Gal}_{K^{\mathrm{ur}}}$ is the inertia subgroup. (Compare this to the short exact sequence

$$0 \longrightarrow I_K \longrightarrow \operatorname{Gal}_K \longrightarrow \hat{\mathbb{Z}} \longrightarrow 0$$

where $\hat{\mathbb{Z}} \simeq \operatorname{Gal}_k = \overline{\langle \operatorname{Frob} \rangle}$ is the absolute Galois group of the residue field k.)

(a) Endow I_K with the Krull topology. Prove that there is a unique topology on W_K which makes (1) a short exact sequence of **topological** groups (meaning all maps are continuous and $W_K/I_K \xrightarrow{\sim} \mathbb{Z}$ is a homeomorphism.)

(Hint: As a neighborhood basis at the identity take all $\operatorname{Gal}_E \subset I_K$ where E/K^{ur} is a varying finite extension.)

(b) Show that W_K is a dense subgroup of Gal_K , but the topology on W_K defined in (a) is **stronger** than the induced topology from Gal_K .

(c) Verify that the Artin map ϕ_K defines a topological isomorphism

$$K^{\times} \xrightarrow{\sim} W_K^{\mathrm{ab}}.$$

(Here K^{\times} carries the standard topology defined by $\|\cdot\|_{K}$.)

Problem D. Thank you all for a great quarter! Please fill out your CAPE teaching evaluations (due Monday March 18th at 8AM).