MATH 204B, WINTER 2

NUMBER THEORY II, HW 1
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From Neukirch’s book Algebraic Number Theory:

e Exercises:

& on page 106; 1 and 2 on page 115
Problem A. Let |-|1,|-]2,-..,]| |n be non-trivial inequivalent absolute values
on a field K.

(a) Show that there is an element g € K with the following properties:
lali > 1, Jala <1, ..., la|l, <1
(Hint. Induction on n. For n = 2 use that the open unit ball for | - |; at

0 is not contained in that of | - |3, and vice versa.)

(b) Let a1,...,an € K be arbitrary elements. Prove that for every € > 0 there
exists an z € K such that

lz—aili<e Vi=1,2,...,n.

o
1+a™
for large enough r. In general try 2 = @121 + - - - + an %, where z; is close

(Hint. First do the case a1 = 1, a3 = --- = a,, = 0 by considering
to 1 relative to | - |; and close to O relative to the others.)

Problem B. Consider the ring of p-adic integers Z, = @Z/p”Z, thought of
as the set of compatible residue classes (Z1,Z2,Z3,...).

(a) Show that Zj is a local domain with maximal ideal mz, = (p) = pZj.
(b) There are (at least) three natural ways to endow Z, with a topology:

— Taking the ideals p™Z, to be a neighborhood basis at 0;
— Taking the induced topology from the product [, ., Z/p"Z;

— The coarsest topology making the maps Z, —» Z/p™Z continuous.

Check that all three give rise to the same topology.
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From Neukirch’s book Algebraic Number Theory:

e Exercises:

3 and 5 on page 115; 4 on page 123

Problem A. Let K be a field with a non-archimedean absolute value | - |.

(a) Let z,y € K. Show that the strong triangle inequality
|z + y| < max{|z|, |y[}

is an equality when |z| # |y|.

(b) Let z1,...,z, € K. Show that
|zy + - - + @] = max{|z1|,...,|zn|}

provided the maximum on the right is achieved exactly once (that is some
|| is larger than all |z;| for j # ). Hint: You may assume i = 1, in which
case the assumption amounts to the inequality |z1] > max{|zs3],.. ., |z.|}.

Problem B. Let K be a field with a non-trivial non-archimedean absolute value
[-], and let R={z € K : |z| < 1} be its valuation ring.

(a) Check that R is integrally closed in its fraction field Frac(R) = K.

(b) Suppose |K*| is discrete and choose a uniformizer 7 € R. Explain why
every nonzero ideal of R is of the form (n*) for some ¢ > 0. Deduce that
R is a Dedekind domain.
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NuMBER THEORyY II, HW 3

From Neukirch’s book Algebraic Number Theory:

e Exercises:

4 on page 106; 4 on page 115; 1 on page 123

Problem A. Let K be a field extension of C with an absolute value |-| extending
the ordinary one |- |, on the complex numbers. This exercise shows that K = C.

{a) Suppose there exists an a € K\C. Show that a has a nearest point in C.
That is, there exists a 2y € C for which the inequality

la — 2| > |a — 2l

is valid for all z € C.

(b) Replacing a by a — 2, and then scaling by a suitable complex number,
show the existence of an a € K\C satisfying

la—z| > |a| >1

forall z € C.
c) For an arbitrary n € N use a®—1 = [[' (a—(*) to show that |a—1| = |a|.
i=0

(d) Deduce that |a — n| = |a| for all n € N, and conclude n < 2|a|. (Contra-
diction.)

Problem B. Let (K, |- |) be a non-discretely valued non-archimedean field of
residue characteristic p = char(R/m) > 0. Suppose the p-power Frobenius map
R/(p) — R/(p) is surjectivel.

(a) Check that the valuation group |K*| is generated by the set of all values
|z| in the range |p| < |z| < 1, and deduce that |K*| is a p-divisible group.

1A complete field K with these properties is called a perfectoid field.



(b) Infer from (a) that m = m2, and conclude that R is not Noetherian (Hint:
Krull’s intersection theorem).
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From Neukirch’s book Algebraic Number Theory:

o Exercises:

7 on page 115; 1 and 2 on pages 165-166

Problem A. Let K be a field equipped with a non-archimedean absolute value

| - | which we assume is non-trivial. We endow the vector space of polynomials
K[t] with the norm || - || defined as follows.

I/l = max{lao|, [asl, .., lan|}  f=ao+art+ - +ant™
(a) Show that | - || is multiplicative; meaning that Vf, g € K[t] we have

gl =171 ligll-

(Hint: Adapt the proof of the Gauss Lemma about contents.)

(b) Check that | - || extends uniquely to an absolute value on the field K (t) of
rational functions.

(c) Is K(t) complete? Prove it or give a divergent Cauchy sequence.
Problem B. Consider the field F = F,(t) with the absolute value | - [; and its
completion F* = F,((t)); the field of formal Laurent series over F,.

(a) Argue that F' is countable but F is uncountable. Deduce that F' is not an
algebraic extension of F.

(b) Choose an element v € F which is transcendental over F and let
E=F(y) K =F(@P).

Observe that the field extension E/K is purely inseparable of degree p.




(c) Show that E and K have the same closures in F. More precisely that

~ -

K=E=F.

(This example shows that it can happen that a non-trivial field extension
collapses upon completion.)
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NUMBER THEORY II, HW 5

From Neukirch’s book Algebraic Number Theory:

e Exercises:

2 on page 152 (take K complete); 1 on page 159; 8 on page 166

Problem A. Let (K,| - |) be a complete non-archimedean field, and suppose
E/K is a finite extension with separable residual extension kg /kg .

(a) Check that E/K Galois = kg/ky Galois.
(b) Assuming E/K is Galois show that the canonical homomorphism
¥ : Gal(E/K) — Gal(kg/kk)
is surjective and E*¢*(¥) is the maximal unramified extension of K in E.
Problem B. Let p” > 1 be a prime power, and let ¢ be a primitive p"-th root
of unity in Q.

(a) Explain why Q,(¢) is a totally ramified extension of Q, of degree ¢(p"),
and the element 1 — ¢ is a uniformizer of Q,(().

(b) Let r = 1. Prove the following identity.

Qp(¢) = Qp(*+v/~p).

(Hint: Write p = u{1 — {)?~! with 2 unit v = —1 mod (1 — ¢) by Wil-
son’s congruence. Hensel’s lemma shows —u = 2P~! for some z € Q,(¢).

Consequently —p is also a (p — 1)-st power.)
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From Neukirch’s book Algebraic Number Theory:

e Exercises:

3 on page 159 (assume L/K are local fields); 8 on page 176

Problem A. Here we show Q, is not complete relative to | - lp-

(a) Let Qpm be the unramified extension of Q, of degree n!. (From class we
know that Q,n = Q,(£,) where &, € Qp is a primitive (p™ — 1)-st root of
unity.) Check that Qpn C Qpatay for all 7.

(b) Let s, be the n-th partial sum of the infinite series ) 50 &p*. Verify that
8 € Qpn, and that the sequence (s, )nen is Cauchy in Q.

(c) Suppose s, = a € C. Use Krasner’s Lemma to see that Q,(sy,) = Q,(c)
for all n sufficiently large. Deduce that o € Qpn for such n.

(d) Fix a large n as in (c) and argue that o has a p-expansion a = 352, ¢;p’
in Qpm whose coefficients are either 0 or powers of &,.

(e) For m > n compare the two expansions of o modulo p™*! and infer that
& = ¢; for all i < m. (Observing that (¢;) C (£m) may be helpful.)

(f) Get the contradiction Qum: = Qpu:.

Problem B. In continuation of Problem A we show that the p-adic completion

Cp = @p is algebraically closed.

(a) Let f € CplX] be monic and irreducible. Spell out why V8 > 0 there is a
monic polynomial g € Qp[X] of the same degree such that ||f — g < é.

(b) As explained in class this implies g is irreducible if & is small enough, and
that g moreover has the root exchange property: For any root o € Cp of
[ there is a root 8 € C, of g such that Cp(a) = Cp(B).

- conclude that a € C,.




Problem C. (Will not be graded.) Let K be a non-archimedean local field
with valuation ring R, and normalized® absolute value ||-||x. Let i be the Haar
measure on K with u(R) = 1. Show that pu(zR) = ||z{|x for all z € K.

IThat is ||z||x = ¢~ "% (*) where g is the size of the residue field,
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NUMBER THEORY II, HW 7

From Neukirch’s book Algebraic Number Theory:

Exercises:

2, 4, 5 on page 142

Problem A. Here we show that @, has only finitely many extensions of a given

degree (in a fixed algebraic closure Q).

(a)

(b)

(d)

Reduce the question to showing that any finite extension K/Q, only has
finitely many totally ramified extensions E/K of a given degree n.

As shown in class any such E/K is of the form E = K(II) where IT € F is
a uniformizer. Furthermore the minimal polynomial of II is an Eisenstein

polynomial:
f(X)=X"+7mn—1X"_1+--~—|—7ra1X+7rag, n=[E: K]

Here m € K is a choice of uniformizer; all a; € R and ag € R*.
— deduce that there is an n-to-one map from pairs (E, II) onto R*~! x R*.

Show that the inverse image of (ap-1,...,a1,a0) gives rise to the same
flelds E as the inverse image of any close enough tuple (by—1,...,b1,bo).
(Hint: Krasner’s lemma; or rather a consequence thereof from class.)

Using the compactness of R"~! x R* deduce that there are only finitely
many totally ramified E/K of degree n.

Problem B. Let k& be any field of characteristic p > 0. Here we show that
K = E((t) has infinitely many separable extensions of degree p (in a fixed

separable closure K®°P).

(2)

Consider the rational functions tln with n > 0 prime-to-p. Suppose n > n’

and
1

1 :
t—n—tw-_—fp—f, fekK.




Argue that f ¢ k[t] - in other words that vk (f) < 0.

(b) In continuation of (a) check that

—n = vg(ff — f) = min{vg (f?),vx (f)} = pvx(f)

which contradicts the assumption p { n.

(c) Conclude that K has infinitely many p-extensions in K®°P. (Hint: Use
Artin-Schreier theory. By (b) the additive group K/p(K) is infinite, where
©(f) = f? — f is the Artin-Schreier operator p : K — K.)

(d) Assuming k is finite (so that K is a local field) adapt the strategy of Prob-
lem A to show that K has only finitely many tamely ramified extensions
in K5 of any given degree. (Hint: Separability of Eisenstein polynomials
is what allows you to use Krasner’s lemma.)
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From Neukirch’s book Algebraic Number Theory:

o Exercises:

1 on page 142 (note that 11 should be 57 here. Hint: Set log(p) =0)

Problem A. (This exercise should have been assigned weeks ago.) Let E/K be
a finite extension of local fields with uniformizers 7 and II. Thus 7 ~ II¢ where
e = e(E/K) is the ramification index. Let f = f(E/K) be the inertia degree.

(a) Suppose fBi,..., B, are elements of Rz whose reductions modulo 7 span
Rg/nREg as a k-vector space (k = R/wR). Show that 8i,..., S, generate
Rp as an R-module. (Hint: R = M +#xRg where M = RS, +- - -+ Rf,.)

(b) Suppose ay,...,as are elements of Rg whose reductions modulo II form
a k-basis for kg. Using part (a) show that the set of elements

ell? (i=1,...,f §=0,...,e—1)

form an R-basis for Rg.

(¢} Conclude that Rg is a free R-module of rank [E : K].

Problem B. Let E/K be a finite Galois extension of local fields with Galois

group G = Gal(E/K) and higher ramification groups
Gi={oeG:vg(o(z)—z) >% Yz € Rg}.

Our goal is to show G; = {1} for all sufficiently large 1.

(a) Suppose z1,...,z, generate Rg as an R-module (cf. Problem A). Check
that o € G lies in the ith ramification group G; if and only if

ve(o(zs) —xs) >1  Vs=1,...,r



(b) Choose an N € N bigger than all finite valuations vg (o(xs) — zs) where
o€ Gand s=1,...,r vary. Argue that

Gi={1} Vi>N.
(Hint: o € Gy must fix all the z, since vg (o(zs) — z5) would have to be
infinite.)

(c) Fill in the details of the following alternative argument: Since @ is finite
the G; become stationary. Furthermore [;,,Gi = {1} since an element
thereof acts trivially on Rg = g_nRE/mgl. Thus G; = {1} for i >> 0.

Problem C. Let @, be the maximal unramified extension of Qp in some fixed
algebraic closure @p.
(a) Why is Q" not complete? (Use Problem A on HW6.)

(b) Show that its completion @ C C, has a valuation ring ZE which is
complete, with p as a uniformizer, and it has residue field!

Zy/(p) <> Fy.

(c) Prove that Gal(Qp"/Q,) is topologically generated by Frobenius (i.e., the
subgroup generated by the Frobenius automorphism is dense):

Gal(Qy/Qp) — Gal(F,/Fy) = Z.
(Here Z = lim Z/nZ is the profinite completion of the integers.)
Problem D. Let Q;,r D Qp" be the union of all tamely ramified finite extensions

of Qp in some fixed algebraic closure Q).

(a) For each n > 0 let m, € Q, be a root of the polynomial X?“~! 4+ p. Show
that Qpu» (m,,) is a totally and tamely ramified degree p" — 1 extension of

Qp» — which is independent of the choice of root .

(b) Deduce that Qun (my,) is the splitting field of X?" =1 +p € Z,n[X] (therefore
Galois) with Galois group

Gal(Qpn (m0)/Qpr) o :up"—l((@li) - ]FI))("'

(Send o to the ratio —“—Sr’;—") and then reduce modulo p.)

1Meaning Zg\r is the ring of Witt vectors W(Fp) of the characteristic p perfect field Fp.



(c) For n =1 observe that Qp(m1) = Qp(¢p). (Use Problem B on HWS5.)
(d) Verify that Q¥ = (U, Qpn(7) and conclude that there is an isomor-
phism of topological groups
Gal(Q/Qy") = lim FJ
where the transition map Fj» — F i is the norm map for m|n.

(e) Infer that P = Gal(Q, /Qy') is the unique Sylow pro-p subgroup (meaning
the largest pro-p subgroup) of the inertia group I = Gal(Q,/ Q-

(Hint: Let P be any maximal pro-p subgroup. Try to show Qy = @5 .
The inclusion C essentially follows from (d). For > observe that Q} is the
smallest subfield of Q, with a pro-p Galois group.)
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From Neukirch’s book Algebraic Number Theory:

e Hxercises:

1 on page 181

(Hint: Recall that a ¢ € Gy lies in G; if and only if v(c(II)/TI — 1) > i.
Taking IT = {—1 reduces the problem to reading off the valuation v(¢V —1)
from the p-expansion of N.)

Problem A. Let K be a field, and let Galy = Gal(K®?/K) be its absolute
Galois group (with the Krull topology).

(a)

(b)

Show that GLy,(C) has ”no small subgroups” — meaning the identity ma-
trix I has an open neighborhood which does not contain any non-trivial

subgroup.

(Hint: First do this for C*. In general, if || A —I|| < € then all eigenvalues
A of A satisfy A — 1] < e. Therefore, if all powers A" also lie in the e-ball
we must have A = 1, i.e. A is at least unipotent. However, since the AV
remain bounded we conclude that A = I.)

Deduce from (a) that any continuous representation Galx — GL,(C)
factors through Gal(E/K) for some finite Galois extension E/K. When
n =1 check that one can take E/K to be an abelian extension.

Let n = 1 and suppose K is a non-archimedean local field. Explain why
composition with the Artin map ¢x defines a bijection

. 1:1
{continuous characters Galx — CX} <

{continuous characters K* — CX of finite order}.

(It sends x — x?P o px where ¥2P is the character of Gal"}éJ given by x.)



Problem B. Let K/Q, be a finite extension, with absolute Galois group Galg.
The cyclotomic character xcye Galg, — Z} is the projection onto

Gal(Qp(Gy=)/Qp) = lim Gal(Qy (Gn)/Qy) = Im(Z/p"2) = Z7.
Its restriction to Galx C Galg, will also be denoted by Xcyc.

(a) Check that xcy. : Galg — Z) is continuous, but not of finite order.

(b) Consider the composition Xg;’c o ¢, which is the character K* — Zx
corresponding to Xcyc via class field theory. Verify that

(xéye © ¢x)(z) = Nk /g, (@) - [llx vz € K*
where || - || ¢ is the normalized absolute value on K.

(Hint: Reduce to the case K = Q, utilizing that Artin maps are compat-
ible with norm maps. To see that p — 1 write p as a norm from Qp((p=).
Finally check that a unit u € Z, is mapped to itself using Zy = I&:.)

Problem C. Let K be a non-archimedean local field. The Weil group Wi C
Galg consists of the automorphisms which act as Z-powers of Frobenius on the

residue field. Thus it sits in a short exact sequence
0—)IK-—-)WK—)Z—)O (1)

where I = Galgur is the inertia subgroup. (Compare this to the short exact
sequence
0— I — Galg — 2 —3 0

where Z ~ Galy, = (Frob) is the,absolute Galois group of the residue field k.)

(a) Endow Ix with the Krull topology. Prove that there is a unique topology
on Wy which makes (1) a short exact sequence of topological groups
(meaning all maps are continuous and Wy /Iy — Z is a homeomor-
phism.)

(Hint: As a neighborhood basis at the identity take all Galg C Ix where
E/K" is a varying finite extension.)

(b) Show that Wk is a dense subgroup of Galy, but the topology on Wi
defined in (a) is stronger than the induced topology from Galy.



(c) Verify that the Artin map ¢ defines a topological isomorphism
K* 2 web.

(Here K carries the standard topology defined by || - || x.)

Problem D. Thank you all for a great quarter! Please fill out your CAPE
teaching evaluations (due Monday March 18th at 8AM).
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Problem A. Let p=1 (mod 3) be a prime number.

(a) Show that every cubic Galois extension E/Qy is of the form E = Q,(V/8)
for some 8 € Q (not in Q;,‘s) — and vice versa.

(b) How many cubic Galois extensions E does Q, have (inside a fixed algebraic
closure)? Are they all tamely ramified?

Problem B.

(a) Does the additive group Q, have a maximal compact subgroup?

(b) Show that Z,; is the unique maximal compact subgroup of Q). Generalize
this statement — and your argument — to finite extensions of Qp.

(c) Let G C @;‘ be a compact subgroup. Prove that G is contained in the
units Uk for some finite extension K/Q,. (Hint: Write G as a countable
union of closed subsets G N K* and use that G is a Baire space.)

Problem C. Let K be a non-archimedean local field with valuation vy (which
extends uniquely to an algebraic closure K). Let
FX)=ay+a1 X4a X%+ +a, X" € K[X]
be a polynomial with nonzero leading and constant coefficients; aga, # 0.
(a) Suppose the roots a,...,a, € K of f have distinct (finite) valuations
vi(ar) > v (ag) > - > vk (an).

Check that all a; # 0 and join the points P; = (i,vk(a;)) in the plane by
a piecewise linear segment. Show that the slopes of this convex segment

are precisely —vg (o) fori=1,...,n.



(b) Extend the result from (a) to the general case without assumptions on the

v (a;) (allowing distinct roots to have the same valuation).

Hint: Consider the "lower convex hull” of the set of points P;. It might
be helpful to do the case n = 2 first.

Problem D. A quaternion algebra D over Q, admits a basis {1,1, j, k} satisfying
the relations
i’=a =0 i =k=—ji

for some a,b € Q. (This follows easily from the Skolem-Noether theorem.)

(a) When a = 1 show that there is an isomorphism D —» M,(Q,) given by
1= (9 i= (%) =08 ke (2%).
(b) Show that D contains at least the following three quadratic subfields:

Q(vVa)  Q(vh)  Qy(v=ab).

Deduce that Qp2 C D (where Q2 is the unramified quadratic extension).
(c) Prove that the following five conditions are equivalent:

(1) D is isomorphic to the matrix algebra M3(Q,).

(2) D is not a division algebra.

(3) There is a nonzero ¢ € D with norm N(g) = ¢ = 0.

(4) The element a lies in the norm group of Q,(v/).

(5) (a,b)2=1, where (-, -)2 denotes the Hilbert symbol - that is the pairing

Q x @y — {+1} (a,b)2 = o, (a)(VD)/ V0.

D

(Here ¢q, is the Artin map.)

Hints: For (1) < (2) just apply Wedderburn’s theorem. For the im-
plication (5) = (1) suppose b=! = N(r + s\/a) — then introduce the
elements u = rj + sk and v = (1 + a)i + (1 — a)ui and refer to part (a).

(d) Note that your arguments in (c) work for any finite extension of Q, and
conclude that there is an isomorphism

D ®q, K 2 My(K)

where K C D is any of the three quadratic subfields from part (b).



Problem E. Let p be a prime. A ”strict p-ring” is a p-adically complete p-
torsion-free ring R for which R/(p) is perfect (meaning the p-power Frobenius
map ¢ : B/(p) — R/(p) sending z — zP is a bijection).

(a) For such R check that R/(p) is necessarily reduced (has no nonzero nilpo-
tents).

(b) If K/Qy is a finite extension, deduce that its valuation ring O is a strict
p-ring if and only if K/Q, is unramified.

(c) Prove that the projection map 7 : R — R/(p) admits a unique multi-
plicative section [e] : R/(p) — R (known as the " Teichmiiller map”).

(Hint: For each n choose a lift =, € R of ¢~ "(Z). If s is a multiplicative

section of the projection (7 o s = Id) show that s(Z) = lim,— e 22" .)

(d) Show that every element z € R has a "Teichmiiller expansion”

oo
z=) lan] p"
n=0
for a unique sequence of coordinates @o, @1, ds, ... in R/(p).

(Fact: One can show that the functor R ~ R/(p) is an equivalence between
the category of strict p-rings and that of perfect rings of characteristic p. Given
a perfect ring R there is a natural choice of a strict p-ring known as the ring of
Witt vectors W(R). For instance W (Fp,) = Z, and W(F,) = Zz‘?, cf. Problem
C on HWS.)



