Number Theory II, HW 1

Saladia income, Janua ya Milain Chase

From Neukirch's book Algebraic Number Theory:

• Exercises:

3 on page 106; 1 and 2 on page 115

Problem A. Let $|\cdot|_1, |\cdot|_2, \ldots, |\cdot|_n$ be non-trivial inequivalent absolute values on a field K.

(a) Show that there is an element $a \in K$ with the following properties:

$$|a|_1 > 1$$
, $|a|_2 < 1$, ..., $|a|_n < 1$.

(Hint. Induction on n. For n=2 use that the open unit ball for $|\cdot|_1$ at 0 is not contained in that of $|\cdot|_2$, and vice versa.)

(b) Let $a_1, \ldots, a_n \in K$ be arbitrary elements. Prove that for every $\epsilon > 0$ there exists an $x \in K$ such that

$$|x - a_i|_i < \epsilon \quad \forall i = 1, 2, \dots, n.$$

(Hint. First do the case $a_1=1$, $a_2=\cdots=a_n=0$ by considering $\frac{a^r}{1+a^r}$ for large enough r. In general try $x=a_1x_1+\cdots+a_nx_n$ where x_i is close to 1 relative to $|\cdot|_i$ and close to 0 relative to the others.)

Problem B. Consider the ring of *p*-adic integers $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n\mathbb{Z}$, thought of as the set of compatible residue classes $(\bar{x}_1, \bar{x}_2, \bar{x}_3, \ldots)$.

- (a) Show that \mathbb{Z}_p is a local domain with maximal ideal $\mathfrak{m}_{\mathbb{Z}_p} = (p) = p\mathbb{Z}_p$.
- (b) There are (at least) three natural ways to endow \mathbb{Z}_p with a topology:
 - Taking the ideals $p^n\mathbb{Z}_p$ to be a neighborhood basis at 0;
 - Taking the induced topology from the product $\prod_{n>0} \mathbb{Z}/p^n\mathbb{Z}$;
 - The coarsest topology making the maps $\mathbb{Z}_p \twoheadrightarrow \mathbb{Z}/p^n\mathbb{Z}$ continuous.

Check that all three give rise to the same topology.

NUMBER THEORY II, HW 2

Decilied meday damatey 28 of in class (or lay neces)

From Neukirch's book Algebraic Number Theory:

• Exercises:

3 and 5 on page 115; 4 on page 123

Problem A. Let K be a field with a non-archimedean absolute value $|\cdot|$.

(a) Let $x, y \in K$. Show that the strong triangle inequality

$$|x+y| \le \max\{|x|, |y|\}$$

is an equality when $|x| \neq |y|$.

(b) Let $x_1, \ldots, x_n \in K$. Show that

$$|x_1 + \dots + x_n| = \max\{|x_1|, \dots, |x_n|\}$$

provided the maximum on the right is achieved exactly once (that is some $|x_i|$ is larger than all $|x_j|$ for $j \neq i$). Hint: You may assume i = 1, in which case the assumption amounts to the inequality $|x_1| > \max\{|x_2|, \ldots, |x_n|\}$.

Problem B. Let K be a field with a non-trivial non-archimedean absolute value $|\cdot|$, and let $R = \{x \in K : |x| \le 1\}$ be its valuation ring.

- (a) Check that R is integrally closed in its fraction field Frac(R) = K.
- (b) Suppose $|K^{\times}|$ is discrete and choose a uniformizer $\pi \in R$. Explain why every nonzero ideal of R is of the form (π^i) for some $i \geq 0$. Deduce that R is a Dedekind domain.

Number Theory II, HW 3

From Neukirch's book Algebraic Number Theory:

• Exercises:

4 on page 106; 4 on page 115; 1 on page 123

Problem A. Let K be a field extension of $\mathbb C$ with an absolute value $|\cdot|$ extending the ordinary one $|\cdot|_{\infty}$ on the complex numbers. This exercise shows that $K=\mathbb C$.

(a) Suppose there exists an $a \in K \setminus \mathbb{C}$. Show that a has a nearest point in \mathbb{C} . That is, there exists a $z_0 \in \mathbb{C}$ for which the inequality

$$|a-z| \ge |a-z_0|$$

is valid for all $z \in \mathbb{C}$.

(b) Replacing a by $a-z_0$, and then scaling by a suitable complex number, show the existence of an $a \in K \setminus \mathbb{C}$ satisfying

$$|a-z| \ge |a| > 1$$

for all $z \in \mathbb{C}$.

- (c) For an arbitrary $n \in \mathbb{N}$ use $a^n 1 = \prod_{i=0}^{n-1} (a \zeta^i)$ to show that |a-1| = |a|.
- (d) Deduce that |a-n|=|a| for all $n\in\mathbb{N}$, and conclude $n\leq 2|a|$. (Contradiction.)

Problem B. Let $(K, |\cdot|)$ be a <u>non-discretely valued non-archimedean field of</u> residue characteristic $p = \operatorname{char}(R/\mathfrak{m}) > 0$. Suppose the *p*-power Frobenius map $R/(p) \longrightarrow R/(p)$ is surjective¹.

(a) Check that the valuation group $|K^{\times}|$ is generated by the set of all values |x| in the range $|p| < |x| \le 1$, and deduce that $|K^{\times}|$ is a p-divisible group.

 $^{^{1}}$ A complete field K with these properties is called a *perfectoid* field.

(b) Infer from (a) that $\mathfrak{m}=\mathfrak{m}^2$, and conclude that R is <u>not</u> Noetherian (Hint: Krull's intersection theorem).

NUMBER THEORY II, HW 4

But Wednesday February 6th in class (or by noon)

From Neukirch's book Algebraic Number Theory:

• Exercises:

7 on page 115; 1 and 2 on pages 165-166

Problem A. Let K be a field equipped with a non-archimedean absolute value $|\cdot|$ which we assume is non-trivial. We endow the vector space of polynomials K[t] with the norm $||\cdot||$ defined as follows.

$$||f|| = \max\{|a_0|, |a_1|, \dots, |a_n|\}$$
 $f = a_0 + a_1t + \dots + a_nt^n$.

(a) Show that $\|\cdot\|$ is multiplicative; meaning that $\forall f,g\in K[t]$ we have

$$||fg|| = ||f|| \cdot ||g||.$$

(Hint: Adapt the proof of the Gauss Lemma about contents.)

- (b) Check that $\|\cdot\|$ extends uniquely to an absolute value on the field K(t) of rational functions.
- (c) Is K(t) complete? Prove it or give a divergent Cauchy sequence.

Problem B. Consider the field $F = \mathbb{F}_p(t)$ with the absolute value $|\cdot|_t$ and its completion $\hat{F} = \mathbb{F}_p((t))$; the field of formal Laurent series over \mathbb{F}_p .

- (a) Argue that F is countable but \hat{F} is uncountable. Deduce that \hat{F} is not an algebraic extension of F.
- (b) Choose an element $\gamma \in \hat{F}$ which is transcendental over F and let

$$E = F(\gamma)$$
 $K = F(\gamma^p)$.

Observe that the field extension E/K is purely inseparable of degree p.

(c) Show that E and K have the same closures in \hat{F} . More precisely that

$$\hat{K}=\hat{E}=\hat{F}.$$

(This example shows that it can happen that a non-trivial field extension collapses upon completion.)

NUMBER THEORY II, HW 5

ProceWorlangsday Polymery 13th in class (or by noon)

From Neukirch's book Algebraic Number Theory:

• Exercises:

2 on page 152 (take K complete); 1 on page 159; 3 on page 166

Problem A. Let $(K, |\cdot|)$ be a complete non-archimedean field, and suppose E/K is a finite extension with separable residual extension k_E/k_K .

- (a) Check that E/K Galois $\Longrightarrow k_E/k_K$ Galois.
- (b) Assuming E/K is Galois show that the canonical homomorphism

$$\psi: \operatorname{Gal}(E/K) \longrightarrow \operatorname{Gal}(k_E/k_K)$$

is surjective and $E^{\ker(\psi)}$ is the maximal unramified extension of K in E.

Problem B. Let $p^r > 1$ be a prime power, and let ζ be a primitive p^r -th root of unity in $\bar{\mathbb{Q}}_p$.

- (a) Explain why $\mathbb{Q}_p(\zeta)$ is a totally ramified extension of \mathbb{Q}_p of degree $\phi(p^r)$, and the element $1-\zeta$ is a uniformizer of $\mathbb{Q}_p(\zeta)$.
- (b) Let r = 1. Prove the following identity.

$$\mathbb{Q}_p(\zeta) = \mathbb{Q}_p(\sqrt[p-1]{-p}).$$

(Hint: Write $p = u(1-\zeta)^{p-1}$ with a unit $u \equiv -1 \mod (1-\zeta)$ by Wilson's congruence. Hensel's lemma shows $-u = x^{p-1}$ for some $x \in \mathbb{Q}_p(\zeta)$. Consequently -p is also a (p-1)-st power.)

NUMBER THEORY II, HW 6

Due Wednesday February 20th in class (or by noon)

From Neukirch's book Algebraic Number Theory:

• Exercises:

3 on page 159 (assume L/K are local fields); 3 on page 176

Problem A. Here we show $\bar{\mathbb{Q}}_p$ is <u>not</u> complete relative to $|\cdot|_p$.

- (a) Let $\mathbb{Q}_{p^{n!}}$ be the unramified extension of \mathbb{Q}_p of degree n!. (From class we know that $\mathbb{Q}_{p^{n!}} = \mathbb{Q}_p(\xi_n)$ where $\xi_n \in \bar{\mathbb{Q}}_p$ is a primitive $(p^{n!} 1)$ -st root of unity.) Check that $\mathbb{Q}_{p^{n!}} \subset \mathbb{Q}_{p^{(n+1)!}}$ for all n.
- (b) Let s_n be the *n*-th partial sum of the infinite series $\sum_{i=0}^{\infty} \xi_i p^i$. Verify that $s_n \in \mathbb{Q}_{p^{n!}}$, and that the sequence $(s_n)_{n \in \mathbb{N}}$ is Cauchy in $\overline{\mathbb{Q}}_p$.
- (c) Suppose $s_n \to \alpha \in C$. Use Krasner's Lemma to see that $\mathbb{Q}_p(s_n) = \mathbb{Q}_p(\alpha)$ for all n sufficiently large. Deduce that $\alpha \in \mathbb{Q}_{p^{n!}}$ for such n.
- (d) Fix a large n as in (c) and argue that α has a p-expansion $\alpha = \sum_{i=0}^{\infty} c_i p^i$ in $\mathbb{Q}_{p^{n!}}$ whose coefficients are either 0 or powers of ξ_n .
- (e) For m > n compare the two expansions of α modulo p^{m+1} and infer that $\xi_i = c_i$ for all $i \leq m$. (Observing that $\langle \xi_i \rangle \subset \langle \xi_m \rangle$ may be helpful.)
- (f) Get the contradiction $\mathbb{Q}_{p^{m!}} = \mathbb{Q}_{p^{n!}}$.

Problem B. In continuation of Problem A we show that the *p*-adic completion $\mathbb{C}_p = \hat{\mathbb{Q}}_p$ is algebraically closed.

- (a) Let $f \in \mathbb{C}_p[X]$ be monic and irreducible. Spell out why $\forall \delta > 0$ there is a monic polynomial $g \in \bar{\mathbb{Q}}_p[X]$ of the same degree such that $||f g|| < \delta$.
- (b) As explained in class this implies g is irreducible if δ is small enough, and that g moreover has the root exchange property: For any root $\alpha \in \bar{\mathbb{C}}_p$ of f there is a root $\beta \in \bar{\mathbb{C}}_p$ of g such that $\mathbb{C}_p(\alpha) = \mathbb{C}_p(\beta)$.
 - conclude that $\alpha \in \mathbb{C}_p$.

Problem C. (Will <u>not</u> be graded.) Let K be a non-archimedean local field with valuation ring R, and normalized absolute value $\|\cdot\|_K$. Let μ be the Haar measure on K with $\mu(R)=1$. Show that $\mu(xR)=\|x\|_K$ for all $x\in K$.

¹That is $||x||_K = q^{-v_K(x)}$ where q is the size of the residue field.

NUMBER THEORY II, HW 7

Due Wednesday February 27th in class (or by neon)

From Neukirch's book Algebraic Number Theory:

• Exercises:

2, 4, 5 on page 142

Problem A. Here we show that \mathbb{Q}_p has only finitely many extensions of a given degree (in a fixed algebraic closure \mathbb{Q}_p).

- (a) Reduce the question to showing that any finite extension K/\mathbb{Q}_p only has finitely many totally ramified extensions E/K of a given degree n.
- (b) As shown in class any such E/K is of the form $E=K(\Pi)$ where $\Pi \in E$ is a uniformizer. Furthermore the minimal polynomial of Π is an Eisenstein polynomial:

$$f(X) = X^n + \pi a_{n-1} X^{n-1} + \dots + \pi a_1 X + \pi a_0, \qquad n = [E : K].$$

Here $\pi \in K$ is a choice of uniformizer; all $a_i \in R$ and $a_0 \in R^{\times}$.

- deduce that there is an *n*-to-one map from pairs (E,Π) onto $R^{n-1}\times R^{\times}$.
- (c) Show that the inverse image of $(a_{n-1}, \ldots, a_1, a_0)$ gives rise to the same fields E as the inverse image of any close enough tuple $(b_{n-1}, \ldots, b_1, b_0)$. (Hint: Krasner's lemma; or rather a consequence thereof from class.)
- (d) Using the compactness of $R^{n-1} \times R^{\times}$ deduce that there are only finitely many totally ramified E/K of degree n.

Problem B. Let k be any field of characteristic p > 0. Here we show that K = k(t) has infinitely many separable extensions of degree p (in a fixed separable closure K^{sep}).

(a) Consider the rational functions $\frac{1}{t^n}$ with n > 0 prime-to-p. Suppose n > n' and

$$\frac{1}{t^n} - \frac{1}{t^{n'}} = f^p - f, \qquad f \in K.$$

Argue that $f \notin k[\![t]\!]$ – in other words that $v_K(f) < 0$.

(b) In continuation of (a) check that

$$-n = v_K(f^p - f) = \min\{v_K(f^p), v_K(f)\} = pv_K(f)$$

which contradicts the assumption $p \nmid n$.

- (c) Conclude that K has infinitely many p-extensions in K^{sep} . (Hint: Use Artin-Schreier theory. By (b) the additive group $K/\wp(K)$ is infinite, where $\wp(f) = f^p f$ is the Artin-Schreier operator $\wp: K \to K$.)
- (d) Assuming k is finite (so that K is a local field) adapt the strategy of Problem A to show that K has only finitely many tamely ramified extensions in K^{sep} of any given degree. (Hint: Separability of Eisenstein polynomials is what allows you to use Krasner's lemma.)

NUMBER THEORY II, HW 8

Due Mednesday March Celinia class (or by soon).

From Neukirch's book Algebraic Number Theory:

• Exercises:

1 on page 142 (note that $\frac{1}{1-p}$ should be $\frac{1}{p-1}$ here. Hint: Set $\log(p)=0$)

Problem A. (This exercise should have been assigned weeks ago.) Let E/K be a finite extension of local fields with uniformizers π and Π . Thus $\pi \sim \Pi^e$ where e = e(E/K) is the ramification index. Let f = f(E/K) be the inertia degree.

- (a) Suppose β_1, \ldots, β_r are elements of R_E whose reductions modulo π span $R_E/\pi R_E$ as a k-vector space $(k=R/\pi R)$. Show that β_1, \ldots, β_r generate R_E as an R-module. (Hint: $R_E=M+\pi R_E$ where $M=R\beta_1+\cdots+R\beta_r$.)
- (b) Suppose $\alpha_1, \ldots, \alpha_f$ are elements of R_E whose reductions modulo Π form a k-basis for k_E . Using part (a) show that the set of elements

$$\alpha_i \Pi^j$$
 $(i = 1, \dots, f \quad j = 0, \dots, e-1)$

form an R-basis for R_E .

(c) Conclude that R_E is a free R-module of rank [E:K].

Problem B. Let E/K be a finite Galois extension of local fields with Galois group G = Gal(E/K) and higher ramification groups

$$G_i = \{ \sigma \in G : v_E(\sigma(x) - x) > i \ \forall x \in R_E \}.$$

Our goal is to show $G_i = \{1\}$ for all sufficiently large i.

(a) Suppose x_1, \ldots, x_r generate R_E as an R-module (cf. Problem A). Check that $\sigma \in G$ lies in the ith ramification group G_i if and only if

$$v_E(\sigma(x_s) - x_s) > i \quad \forall s = 1, \dots, r.$$

(b) Choose an $N \in \mathbb{N}$ bigger than all finite valuations $v_E(\sigma(x_s) - x_s)$ where $\sigma \in G$ and $s = 1, \ldots, r$ vary. Argue that

$$G_i = \{1\} \qquad \forall i \geq N.$$

(Hint: $\sigma \in G_N$ must fix all the x_s since $v_E(\sigma(x_s) - x_s)$ would have to be infinite.)

(c) Fill in the details of the following alternative argument: Since G is finite the G_i become stationary. Furthermore $\bigcap_{i>0} G_i = \{1\}$ since an element thereof acts trivially on $R_E = \varprojlim R_E/\mathfrak{m}_E^{i+1}$. Thus $G_i = \{1\}$ for i >> 0.

Problem C. Let $\mathbb{Q}_p^{\mathrm{ur}}$ be the maximal unramified extension of \mathbb{Q}_p in some fixed algebraic closure \mathbb{Q}_p .

- (a) Why is \mathbb{Q}_p^{ur} not complete? (Use Problem A on HW6.)
- (b) Show that its completion $\widehat{\mathbb{Q}_p^{\mathrm{ur}}} \subset \mathbb{C}_p$ has a valuation ring $\widehat{\mathbb{Z}_p^{\mathrm{ur}}}$ which is complete, with p as a uniformizer, and it has residue field¹

$$\widehat{\mathbb{Z}_p^{\mathrm{ur}}}/(p) \xrightarrow{\sim} \bar{\mathbb{F}}_p.$$

(c) Prove that $\operatorname{Gal}(\mathbb{Q}_p^{\operatorname{ur}}/\mathbb{Q}_p)$ is topologically generated by Frobenius (i.e., the subgroup generated by the Frobenius automorphism is dense):

$$\operatorname{Gal}(\mathbb{Q}_p^{\operatorname{ur}}/\mathbb{Q}_p) \xrightarrow{\sim} \operatorname{Gal}(\bar{\mathbb{F}}_p/\mathbb{F}_p) = \hat{\mathbb{Z}}.$$

(Here $\hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n\mathbb{Z}$ is the profinite completion of the integers.)

Problem D. Let $\mathbb{Q}_p^{\mathrm{tr}} \supset \mathbb{Q}_p^{\mathrm{ur}}$ be the union of all tamely ramified finite extensions of \mathbb{Q}_p in some fixed algebraic closure $\bar{\mathbb{Q}}_p$.

- (a) For each n > 0 let $\pi_n \in \bar{\mathbb{Q}}_p$ be a root of the polynomial $X^{p^n-1} + p$. Show that $\mathbb{Q}_{p^n}(\pi_n)$ is a totally and tamely ramified degree $p^n 1$ extension of \mathbb{Q}_{p^n} which is independent of the choice of root π_n .
- (b) Deduce that $\mathbb{Q}_{p^n}(\pi_n)$ is the splitting field of $X^{p^n-1}+p\in\mathbb{Z}_{p^n}[X]$ (therefore Galois) with Galois group

$$\operatorname{Gal}(\mathbb{Q}_{p^n}(\pi_n)/\mathbb{Q}_{p^n}) \xrightarrow{\sim} \mu_{p^n-1}(\bar{\mathbb{Q}}_p) \xrightarrow{\sim} \mathbb{F}_{p^n}^{\times}.$$

(Send σ to the ratio $\frac{\sigma(\pi_n)}{\pi_n}$ and then reduce modulo p.)

¹Meaning $\widehat{\mathbb{Z}_p^{\mathrm{ur}}}$ is the ring of Witt vectors $W(\bar{\mathbb{F}}_p)$ of the characteristic p perfect field $\bar{\mathbb{F}}_p$.

- (c) For n=1 observe that $\mathbb{Q}_p(\pi_1)=\mathbb{Q}_p(\zeta_p)$. (Use Problem B on HW5.)
- (d) Verify that $\mathbb{Q}_p^{\mathrm{tr}} = \bigcup_{n>0} \mathbb{Q}_{p^n}(\pi_n)$ and conclude that there is an isomorphism of topological groups

$$\operatorname{Gal}(\mathbb{Q}_p^{\operatorname{tr}}/\mathbb{Q}_p^{\operatorname{ur}}) \xrightarrow{\sim} \varprojlim \mathbb{F}_{p^n}^{\times}$$

where the transition map $\mathbb{F}_{p^n}^{\times} \to \mathbb{F}_{p^m}^{\times}$ is the norm map for m|n.

- (e) Infer that $P = \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p^{\operatorname{tr}})$ is the unique Sylow pro-p subgroup (meaning the largest pro-p subgroup) of the inertia group $I = \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p^{\operatorname{ur}})$.
 - (Hint: Let P be any maximal pro-p subgroup. Try to show $\mathbb{Q}_p^{\mathrm{tr}} = \bar{\mathbb{Q}}_p^P$. The inclusion \subset essentially follows from (d). For \supset observe that $\bar{\mathbb{Q}}_p^P$ is the smallest subfield of $\bar{\mathbb{Q}}_p$ with a pro-p Galois group.)

NUMBER THEORY II, HW 9

Dac Wednesday March 18th medias for by 1000.

From Neukirch's book Algebraic Number Theory:

• Exercises:

1 on page 181

(Hint: Recall that a $\sigma \in G_0$ lies in G_i if and only if $v(\sigma(\Pi)/\Pi - 1) \ge i$. Taking $\Pi = \zeta - 1$ reduces the problem to reading off the valuation $v(\zeta^N - 1)$ from the p-expansion of N.)

Problem A. Let K be a field, and let $Gal_K = Gal(K^{sep}/K)$ be its absolute Galois group (with the Krull topology).

(a) Show that $GL_n(\mathbb{C})$ has "no small subgroups" – meaning the identity matrix I has an open neighborhood which does not contain any non-trivial subgroup.

(Hint: First do this for \mathbb{C}^{\times} . In general, if $||A-I|| < \epsilon$ then all eigenvalues λ of A satisfy $|\lambda-1| < \epsilon$. Therefore, if all powers A^N also lie in the ϵ -ball we must have $\lambda=1$, i.e. A is at least unipotent. However, since the A^N remain bounded we conclude that A=I.)

- (b) Deduce from (a) that any continuous representation $\operatorname{Gal}_K \to \operatorname{GL}_n(\mathbb{C})$ factors through $\operatorname{Gal}(E/K)$ for some finite Galois extension E/K. When n=1 check that one can take E/K to be an abelian extension.
- (c) Let n=1 and suppose K is a non-archimedean local field. Explain why composition with the Artin map ϕ_K defines a bijection

{continuous characters $Gal_K \to \mathbb{C}^{\times}$ } $\stackrel{1:1}{\longleftrightarrow}$ {continuous characters $K^{\times} \to \mathbb{C}^{\times}$ of finite order}.

(It sends $\chi \mapsto \chi^{\mathrm{ab}} \circ \phi_K$ where χ^{ab} is the character of $\mathrm{Gal}_K^{\mathrm{ab}}$ given by χ .)

Problem B. Let K/\mathbb{Q}_p be a finite extension, with absolute Galois group Gal_K . The cyclotomic character $\chi_{\mathrm{cyc}}:\mathrm{Gal}_{\mathbb{Q}_p}\to\mathbb{Z}_p^\times$ is the projection onto

$$\operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^{\infty}})/\mathbb{Q}_p) = \underline{\lim} \operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^n})/\mathbb{Q}_p) \simeq \underline{\lim} (\mathbb{Z}/p^n\mathbb{Z})^{\times} = \mathbb{Z}_n^{\times}.$$

Its restriction to $\operatorname{Gal}_K \subset \operatorname{Gal}_{\mathbb{Q}_p}$ will also be denoted by $\chi_{\operatorname{cyc}}$.

- (a) Check that $\chi_{\text{cyc}}: \text{Gal}_K \to \mathbb{Z}_p^{\times}$ is continuous, but <u>not</u> of finite order.
- (b) Consider the composition $\chi_{\text{cyc}}^{\text{ab}} \circ \phi_K$, which is the character $K^{\times} \to \mathbb{Z}_p^{\times}$ corresponding to χ_{cyc} via class field theory. Verify that

$$(\chi_{\operatorname{cyc}}^{\operatorname{ab}} \circ \phi_K)(x) = N_{K/\mathbb{Q}_p}(x) \cdot \|x\|_K \qquad \forall x \in K^\times$$

where $\|\cdot\|_K$ is the normalized absolute value on K.

(Hint: Reduce to the case $K=\mathbb{Q}_p$ utilizing that Artin maps are compatible with norm maps. To see that $p\mapsto 1$ write p as a norm from $\mathbb{Q}_p(\zeta_{p^n})$. Finally check that a unit $u\in\mathbb{Z}_p^\times$ is mapped to itself using $\mathbb{Z}_p^\times\stackrel{\sim}{\longrightarrow} I_{\mathbb{Q}_n}^{ab}$.)

Problem C. Let K be a non-archimedean local field. The Weil group $W_K \subset \operatorname{Gal}_K$ consists of the automorphisms which act as \mathbb{Z} -powers of Frobenius on the residue field. Thus it sits in a short exact sequence

$$0 \longrightarrow I_K \longrightarrow W_K \longrightarrow \mathbb{Z} \longrightarrow 0 \tag{1}$$

where $I_K = \operatorname{Gal}_{K^{\mathrm{ur}}}$ is the inertia subgroup. (Compare this to the short exact sequence

$$0 \longrightarrow I_K \longrightarrow \operatorname{Gal}_K \longrightarrow \hat{\mathbb{Z}} \longrightarrow 0$$

where $\hat{\mathbb{Z}} \simeq \operatorname{Gal}_k = \overline{\langle \operatorname{Frob} \rangle}$ is the absolute Galois group of the residue field k.)

(a) Endow I_K with the Krull topology. Prove that there is a unique topology on W_K which makes (1) a short exact sequence of **topological** groups (meaning all maps are continuous and $W_K/I_K \xrightarrow{\sim} \mathbb{Z}$ is a homeomorphism.)

(Hint: As a neighborhood basis at the identity take all $\operatorname{Gal}_E \subset I_K$ where E/K^{ur} is a varying finite extension.)

(b) Show that W_K is a dense subgroup of Gal_K , but the topology on W_K defined in (a) is **stronger** than the induced topology from Gal_K .

(c) Verify that the Artin map ϕ_K defines a topological isomorphism

$$K^{\times} \xrightarrow{\sim} W_K^{ab}$$
.

(Here K^\times carries the standard topology defined by $\|\cdot\|_K.)$

Problem D. Thank you all for a great quarter! Please fill out your CAPE teaching evaluations (due Monday March 18th at 8AM).

NUMBER THEORY II, FINAL

Problem A. Let $p \equiv 1 \pmod{3}$ be a prime number.

- (a) Show that every cubic Galois extension E/\mathbb{Q}_p is of the form $E=\mathbb{Q}_p(\sqrt[3]{\theta})$ for some $\theta\in\mathbb{Q}_p^{\times}$ (not in $\mathbb{Q}_p^{\times 3}$) and vice versa.
- (b) How many cubic Galois extensions E does \mathbb{Q}_p have (inside a fixed algebraic closure)? Are they all tamely ramified?

Problem B.

- (a) Does the additive group \mathbb{Q}_p have a maximal compact subgroup?
- (b) Show that \mathbb{Z}_p^{\times} is the unique maximal compact subgroup of \mathbb{Q}_p^{\times} . Generalize this statement and your argument to finite extensions of \mathbb{Q}_p .
- (c) Let $G \subset \bar{\mathbb{Q}}_p^{\times}$ be a compact subgroup. Prove that G is contained in the units U_K for some finite extension K/\mathbb{Q}_p . (Hint: Write G as a countable union of closed subsets $G \cap K^{\times}$ and use that G is a Baire space.)

Problem C. Let K be a non-archimedean local field with valuation v_K (which extends uniquely to an algebraic closure \bar{K}). Let

$$f(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n \in K[X]$$

be a polynomial with nonzero leading and constant coefficients; $a_0a_n\neq 0$.

(a) Suppose the roots $\alpha_1, \ldots, \alpha_n \in \bar{K}$ of f have distinct (finite) valuations

$$v_K(\alpha_1) > v_K(\alpha_2) > \cdots > v_K(\alpha_n).$$

Check that all $a_i \neq 0$ and join the points $P_i = (i, v_K(a_i))$ in the plane by a piecewise linear segment. Show that the **slopes** of this convex segment are precisely $-v_K(\alpha_i)$ for $i = 1, \ldots, n$.

(b) Extend the result from (a) to the general case without assumptions on the $v_K(\alpha_i)$ (allowing distinct roots to have the same valuation).

Hint: Consider the "lower convex hull" of the set of points P_i . It might be helpful to do the case n=2 first.

Problem D. A quaternion algebra D over \mathbb{Q}_p admits a basis $\{1, i, j, k\}$ satisfying the relations

$$i^2 = a \qquad j^2 = b \qquad ij = k = -ji$$

for some $a,b\in\mathbb{Q}_p^{\times}$. (This follows easily from the Skolem-Noether theorem.)

(a) When a=1 show that there is an isomorphism $D \xrightarrow{\sim} M_2(\mathbb{Q}_p)$ given by

$$1 \mapsto \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) \qquad i \mapsto \left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix} \right) \qquad j \mapsto \left(\begin{smallmatrix} 0 & b \\ 1 & 0 \end{smallmatrix} \right) \qquad k \mapsto \left(\begin{smallmatrix} 0 & b \\ -1 & 0 \end{smallmatrix} \right).$$

(b) Show that D contains at least the following three quadratic subfields:

$$\mathbb{Q}_p(\sqrt{a})$$
 $\mathbb{Q}_p(\sqrt{b})$ $\mathbb{Q}_p(\sqrt{-ab}).$

Deduce that $\mathbb{Q}_{p^2} \subset D$ (where \mathbb{Q}_{p^2} is the unramified quadratic extension).

- (c) Prove that the following five conditions are equivalent:
 - (1) D is isomorphic to the matrix algebra $M_2(\mathbb{Q}_p)$.
 - (2) D is not a division algebra.
 - (3) There is a nonzero $q \in D$ with norm $N(q) = q\bar{q} = 0$.
 - (4) The element a lies in the norm group of $\mathbb{Q}_p(\sqrt{b})$.
 - (5) $(a,b)_2=1$, where $(\cdot,\cdot)_2$ denotes the Hilbert symbol that is the pairing

$$\mathbb{Q}_p^{\times} \times \mathbb{Q}_p^{\times} \longrightarrow \{\pm 1\} \qquad (a,b)_2 = \phi_{\mathbb{Q}_p}(a)(\sqrt{b})/\sqrt{b}.$$

(Here $\phi_{\mathbb{Q}_p}$ is the Artin map.)

Hints: For $(1) \iff (2)$ just apply Wedderburn's theorem. For the implication $(5) \implies (1)$ suppose $b^{-1} = N(r + s\sqrt{a})$ – then introduce the elements u = rj + sk and v = (1 + a)i + (1 - a)ui and refer to part (a).

(d) Note that your arguments in (c) work for any finite extension of \mathbb{Q}_p and conclude that there is an isomorphism

$$D \otimes_{\mathbb{O}_n} K \xrightarrow{\sim} M_2(K)$$

where $K \subset D$ is any of the three quadratic subfields from part (b).

Problem E. Let p be a prime. A "strict p-ring" is a p-adically complete p-torsion-free ring R for which R/(p) is perfect (meaning the p-power Frobenius map $\varphi: R/(p) \longrightarrow R/(p)$ sending $x \mapsto x^p$ is a bijection).

- (a) For such R check that R/(p) is necessarily reduced (has no nonzero nilpotents).
- (b) If K/\mathbb{Q}_p is a finite extension, deduce that its valuation ring \mathcal{O}_K is a strict p-ring if and only if K/\mathbb{Q}_p is unramified.
- (c) Prove that the projection map $\pi: R \longrightarrow R/(p)$ admits a **unique** multiplicative section $[\bullet]: R/(p) \longrightarrow R$ (known as the "Teichmüller map").

(Hint: For each n choose a lift $x_n \in R$ of $\varphi^{-n}(\bar{x})$. If s is a multiplicative section of the projection $(\pi \circ s = \mathrm{Id})$ show that $s(\bar{x}) = \lim_{n \to \infty} x_n^{p^n}$.)

(d) Show that every element $x \in R$ has a "Teichmüller expansion"

$$x = \sum_{n=0}^{\infty} [\bar{a}_n] \cdot p^n$$

for a unique sequence of coordinates $\bar{a}_0, \bar{a}_1, \bar{a}_2, \ldots$ in R/(p).

(Fact: One can show that the functor $R \rightsquigarrow R/(p)$ is an equivalence between the category of strict p-rings and that of perfect rings of characteristic p. Given a perfect ring $\mathcal R$ there is a natural choice of a strict p-ring known as the ring of Witt vectors $W(\mathcal R)$. For instance $W(\mathbb F_p) = \mathbb Z_p$ and $W(\overline{\mathbb F}_p) = \widehat{\mathbb Z_p^{\mathrm{ur}}}$, cf. Problem C on HW8.)