WEEK

10.

(Student seminars.)
LUBIN-TATE THEORY LECTURE 1

RANDY MARTINEZ

We first give an overview on some key elements of power series.

1. Power Series

A will denote a commutative ring with unity. A power series with coefficients in A is an infinite series of the form

$$\sum_{n=0}^{\infty} a_n T^n, \quad a_n \in A.$$

We can make a ring structure out of the set of power series with coefficients in A by defining addition of two power series as:

$$\sum a_n T^n + \sum b_n T^n = \sum (a_n + b_n) T^n,$$

and multiplication as

$$\left(\sum a_n T^n \right) \left(\sum b_n T^n \right) = \sum \left(\sum_{i+j=n} a_i b_j \right) T^n.$$

This set is usually denoted as $A[[T]]$.

Note: We must be cautious when composing a power series f with g. If g has a constant term, then we would have to evaluate an infinite sum, which we cannot evaluate in general. So we must restrict the case to where g has no constant term. This composition is denoted by $f \circ g$.

Lemma 1.1. (a) (Associativity) For any $f \in A[[T]]$ and $g, h \in TA[[T]]$,

$$f \circ (g \circ h) = (f \circ g) \circ h.$$

(b) Let $f = \sum_{n=1}^{\infty} a_n T^n$. Then there is a $g \in TA[[T]]$ such that $f \circ g = T$ if and only if $a_1 \in A^\times$. If such a g exists, then it is unique and $g \circ f = T$.

Proof: (a) By defining a product to be pointwise multiplication, we immediately deduce that $(f_1 f_2)g = (f_1g)(f_2g)$, and hence $f^n g = (fog)^n$. If $f = T^n$, then we deduce that $f (goh) = (goh)^n$, and similarly $(fog)oh = (goh)oh = (goh)^n$. This implies that if $f = \sum a_n T^n$, then $f (goh) = \sum a_n (goh)^n = (fog)oh$.

(b) Let $f = \sum_{n=1}^{\infty} a_n T^n$. For such a $g = \sum_{n=1}^{\infty} b_n T^n$ with $f \circ g = T$ to exist, we would need that

$$a_1 b_1 = 1, \quad a_2 b_2 + a_2 b_2^2 = 0, \quad \ldots, \quad a_1 b_n + \text{terms in } a_2, \ldots, a_{n-1}, b_1, \ldots, b_{n-1}.$$

In particular, such a g exists precisely when a_1 and b_1 are units. We then inductively define b_n for every n. For example, $b_2 = a_1^{-1}(-a_2 b_2^2) = b_1(-a_2 b_2^2)$. In general,

$$b_n = a_1^{-1}(\text{terms in } a_2, \ldots, a_{n-1}, b_1, \ldots, b_{n-1}),$$

so that b_n are completely determined by b_1, \ldots, b_{n-1} and a_i's; giving uniqueness. Note that since b_1 is invertible, there is an $h \in TA[[T]]$ such that $g \circ h = T$. Hence

$$f = f \circ T = f \circ (g \circ h) = (f \circ g) \circ h = T \circ h = h,$$

which implies that $f = h$, so $g \circ f = T$.

\hfill \Box
2. Formal Group Laws

Definition 2.1. A (one-parameter commutative) formal group law is a power series $F \in A[[X,Y]]$ such that
(a) $F(X,Y) = X + Y + \text{terms of higher degree};$
(b) $F(X, F(Y, Z)) = F(F(X, Y), Z)$ (associativity);
(c) There is a unique $i_F(X) \in XA[[X]]$ such that $F(X, i_F(X)) = 0$ (inverse);
(d) $F(X, Y) = F(Y, X)$ (commutativity).

This gives a group structure without an underlying set, which is why it is a "formal" group law.

Note that by the axioms, we have that
$$F(X, 0) = X + \text{higher order terms}, \quad F(F(X, 0), 0) = F(X, 0).$$

Let $f = F(X, 0)$. Then by Lemma 1.1 there exists an inverse g such that $f \circ g = T$ and $f \circ f = f$, which both imply that $f = X$. Hence $F(X, 0) = X$ and similarly, $F(0, Y) = Y$.

Let $K, |\cdot|$ be local field with a non-archimedean absolute value. Let $R = \{x \in K : |x| \leq 1\}$ be the ring of integers and $m = \{x \in K : |x| < 1\}$ its maximal ideal. Define $F = \sum_{i,j} a_{ij} X^i Y^j$ to be a formal group law over R. For any $x, y \in m$, $a_{ij} x^i y^j \to 0$ as $i, j \to \infty$, so $F(x, y)$ converges to an element in m, which we denote by $x +_F y$, which gives us a group structure on m.

Example: (a) $F(X, Y) = X + Y$, normal additive group structure on m.
(b) $F(X, Y) = X + Y + XY$. Then $(m, +_F)$ isomorphic to $(1 + m, \times)$ given by the map $a \mapsto 1 + a$. The map $a \mapsto 1 + a$ is clearly bijective, and being a group homomorphism follows from the following being a commutative diagram:

$$\begin{align*}
(a, b) & \quad \xrightarrow{a \mapsto 1 + a} \quad (a + b, 1 + b) \\
+_F & \quad \downarrow \quad \times \\
(a + b + ab) & \quad \xrightarrow{a \mapsto 1 + a} \quad (a + b + ab)
\end{align*}$$

3. Homomorphisms of Formal Group Laws

Definition 3.1. Let $F(X, Y), G(X, Y)$ be formal group laws. A homomorphism $h : F \to G$ is a power series $h \in TA[[T]]$ such that
$$h(F(X, Y)) = G(h(X), h(Y)).$$

If there exists a homomorphism $h : G \to F$ such that $h \circ h' = h' \circ h = T$, then we say h is an isomorphism. A homomorphism $h : F \to F$ is called an endomorphism of F.

Example: Let $F(X, Y) = X + Y + XY = (1 + X)(1 + Y) - 1$. Then $f(T) = (1 + T)^p - 1$ is an endomorphism of F:
$$f(F(X, Y)) = (1 + ((1 + X)(1 + Y) - 1)^p - 1 = (1 + X)^p(1 + Y)^p - 1$$
$$F(f(X), f(Y)) = (1 + (1 + X)^p - 1)(1 + (1 + Y)^p - 1) - 1 = (1 + X)^p(1 + Y)^p - 1.$$

Consider the following diagram:

$$\begin{align*}
m & \quad \xrightarrow{f} \quad m \\
1 + m & \quad \xrightarrow{a \mapsto a^p} \quad 1 + m
\end{align*}$$
This diagram commutes since
\[a \xrightarrow{1 + a} 1 + a \xrightarrow{a \mapsto a^p} (1 + a)^p; \]
\[a \xrightarrow{f} (1 + a)^p - 1 \xrightarrow{a \mapsto a^p} (1 + a)^p. \]
Then we have that \(f \) corresponds to the map \(a \mapsto a^p \).

For a formal group law \(G \), define for \(f, g \in TA[[T]] \):
\[f +_G g = G(f(T), g(T)), \]
which makes \(TA[[T]] \) an abelian group. Notice that
\[f +_G i_g \circ f = 0. \]

Lemma 3.1. (a) For any formal group law \(F \) and \(G \), \(\text{Hom}(F, G) \) is an abelian group under \(+_G \).
(b) \(\text{End}(F) \) becomes a ring with multiplication \(f \circ g \).

Proof: (a) By using commutativity and associativity of \(+_G \) we deduce that for \(f, g \in \text{Hom}(F, G) \),
\[(f +_G g)(F(X,Y)) = G(f(F(X,Y), g(F(X,Y))) = G(G(f(X), f(Y)), G(g(X), g(Y))) \]
\[= (f(X) +_G f(Y)) +_G (g(X) +_G g(Y)) \]
\[= (f(X) +_G g(X)) +_G (f(Y) +_G g(Y)) \]
\[= G((f +_G g)(X), (f +_G g)(Y)). \]
Hence \(f +_G g \in \text{Hom}(F, G) \). We need to show that \(i_G \circ f \in \text{Hom}(F, G) \) (inverse), i.e. we want to show that \((i_G \circ f)(F(X,Y)) = G((i_G \circ f)(X), (i_G \circ f)(Y)) \). Since \(f \) is a homomorphism and we have associativity,
\[(i_G \circ f)(F(X,Y)) = i_G(G(f(X), f(Y))); \]
\[G((i_G \circ f)(X), (i_G \circ f)(Y)) = G(i_G(f(X)), i_G(f(Y))). \]
So it suffices to show that \(i_G(G(f(X), f(Y))) = G(i_G(f(X)), i_G(f(Y))) \). By the axioms, the left hand side gives us that
\[G(G(f(X), f(Y)), i_G(G(f(X), f(Y)))) = 0. \]

Notice that
\[G(G(f(X), f(Y)), G(i_G(f(X)), i_G(f(Y)))) = (f(X) +_G f(Y)) +_G (i_G(f(X)) +_G i_G(f(Y))) \]
\[= (f(X) +_G i_G(f(X))) +_G (f(Y) +_G i_G(f(Y))) = 0, \]
and hence we get the equality by uniqueness of the inverse \(i_G \). Since \(0 \in \text{Hom}(F, G) \), we get the claim.
(b) We already have that composition is associative and the identity being \(X \), so we only need to show distributivity. For \(f, g, h \in \text{End}(F) \),
\[f \circ (g +_F h) = f(F(g(T), h(T))) = F((f \circ g)(T), (f \circ h)(T)) = (f \circ g) +_F (f \circ h); \]
\[(f +_F g) \circ h = (F(f(T), g(T))(h(T)) = F((f \circ h)(T), (g \circ h)(T)) = (f \circ h) +_F (g \circ h). \]
§0. Notations. \(K \) nonarchimedean local field with integer \(A \).

Let \(M \triangleq A \) denote the maximal ideal and suppose \(K = A/M \) is of characteristic \(p > 0 \). Let \(q = 1/k! \).

§1. Formal Modules. Let \(R \) be a commutative ring.

- A formal \(K \)-module is a pair \((F, E, \cdot J) \) consisting of a commutative formal group \(F \in K[[X]] \) together with a ring homomorphism
 \[
 E : R \to \text{End}(F).
 \]

- Given formal \(K \)-modules \(M_1 = (F_1, E, \cdot J_1) \) and \(M_2 = (F_2, E, \cdot J_2) \) a homomorphism \(M_1 \to M_2 \) is a homomorphism of formal groups \(\phi : F_1 \to F_2 \) such that if \(N \in F \) then
 \[
 \phi(E[N](LT)) = [E(LT)](\phi(N))
 \]

The definition of isomorphism is the usual one.

§2. Lubin-Tate Formal Groups.

Definition. Let \(\pi \in A \) be a uniformiser. A Lubin-Tate formal group for \(\pi \) is a formal \(A \)-module \((F, E, \cdot J) \) such that

- **LTG 1:** \(\pi N = \pi^q (\text{mod } \pi) \) \((\pi \text{ acts by a lift of } \phi(F)) \) Frebenius.
- **LTG 2:** \(\pi A I \equiv \pi^q (\text{mod } \pi^2) \) \((\pi \text{ acts by a ring of integers } \gamma) \) worth of endomorphisms.
Remarks: Let (F, \mathcal{E}) be a Lubin-Tate formal group, for π.

- Reducing the coefficients of F mod π, we obtain a formal group $\overline{F} \subset \mathcal{F}_g, \pi \cdot \mathcal{F}_g, \pi$. For $a \in A$ arbitrary, $[a \mathcal{F}(\pi) : \Rightarrow [a \mathcal{F}(\pi)](\text{mod} \pi)$ may not define an endomorphism of \overline{F}, but $[\pi \mathcal{F}(\pi)](\pi)$ certainly does.

- LTG2 \Rightarrow the map $\mathfrak{A} \rightarrow \text{End}(\mathcal{F})$ is injective.

§3. Technical stuff.

Question: Let $\pi \in \mathcal{A}$ be a uniformiser. Under what hypothesis on the pair (K, π) does there exist a Lubin-Tate formal group for π?

If such a Lubin-Tate formal group exists, then is it unique, or can there be multiple Lubin-Tates associated to the same π?

If there are many Lubin-Tate formal groups for the same π, then what are the homomorphisms between them? Can we say which of these are isomorphisms?

All the questions above admit precise and complete answers, however we need to do some technical work to prove them.

- For each uniformiser $\pi \in \mathcal{A}$, let $\mathcal{F}_{\mathcal{T}} = \{ h \in \mathcal{A} \mid h \equiv \pi^T \text{ (mod } \pi^2) \} \quad h \equiv \pi^T \text{ (mod } \pi) \}

Observation: A formal A-module (F, \mathcal{E}) is Lubin-Tate for π only if $[\pi \mathcal{F}_{\mathcal{T}}] \in \mathcal{F}_{\mathcal{T}}$. So we can refine our first question by asking: "For $h \in \mathcal{F}_{\mathcal{T}}$ fixed, how many Lubin Tates (F, \mathcal{E})
are there such that \(\Phi(\pi) = h' \). The answer is exactly one! \(\Box \)

This is proved in the first corollary below. The point is that the set \(\mathcal{F}_\pi \) naturally parametrises the space of Lubin-Tate formal groups for \(\pi \).

Lemma: Let \(\pi \in \mathcal{A} \) be a uniformizer and fix \(f, g \in \mathcal{F}_\pi \).

If \(u \in \mathcal{A}[x_1, \ldots, x_n] \) is homogeneous of degree 1, then there exists a unique power series \(\Phi(f, g)(x_1, \ldots, x_n) \in \mathcal{A}[x_1, \ldots, x_n] \) such that the following conditions hold:

1. \(\forall \, \xi \in \mathcal{F}_\pi \) \(\Phi(f, g)(x_1, \ldots, x_n) = u(x_1, \ldots, x_n) + (\text{terms of degree } \geq 2) \).
2. \(\Phi(f, g)(x_1, \ldots, x_n) = \Phi(f, g)(g(x_1), \ldots, g(x_n)) \).

Proof: Assume \(u \) is homogeneous of degree 1. By passing to sequences of partial sums we can reduce to proving...

To show: \(\exists ! \) sequence \((\phi_1, \phi_2, \ldots) \) in \(\mathcal{A}[x_1, \ldots, x_n] \) such that for all \(n \in \mathbb{Z}^+ \), the following conditions hold:

1. \(\phi_n \) is a poly. of degree \(\leq n \).
2. \(\phi_n - \phi_{n-1} \) is homogeneous degree \(n \). (Note \(\phi_0 = 0 \)).
3. \(\phi_n = u + (\text{terms of degree } \geq 2) \).
4. \(\phi_n f(\phi_1(x_1, \ldots, x_n), \ldots, g(x_1), \ldots, g(x_n)) + (\text{terms of degree } \geq n+1) \).
To simplify notation write $\phi(d) = (\text{terms of degree } \geq d)$. \[\text{12103. } (4) \]

Base case ($r=1$).

- ϕ_1 is a poly. of degree ≤ 1.
- $\phi_1 = q + \phi(2)$.

To show: $\phi_1 = q$ satisfies ϕ_1 and ϕ_{+1}.

ϕ_1 is automatic since $\phi_0 = \phi$.

For the proof of ϕ_{+1}, write $\psi = \sum a_i x_i$ for $a_i \in A$.

Then $f(\psi(x_1, \ldots, x_n)) = f(\sum a_i x_i) = \prod \sum a_i x_i + O(2)$

$= \sum a_i (\prod x_i + O(2)) + O(2)$

$= \sum a_i q(x_i) + O(2)$

$= \psi(q(x_1), \ldots, q(x_n)) + O(2)$.

Induction Step. Fix $r \geq 1$. Suppose ϕ_r is constructed.

Show: \[\exists! \phi_{r+1} \in A[x_1, \ldots, x_n] \text{ satisfying } \phi_r, \ldots, \phi_{r+1} \]

ϕ_{r+1} is satisfied.

Show: \[\exists! Q \in A[x_1, \ldots, x_n] \text{ such that } \phi_{r+1} = \phi_r + Q \]

satisfies ϕ_{r+1}.

For $Q \in k[x_1, \ldots, x_n]$, the expression $\phi_r + Q$ satisfies...
... \(f(\phi_r(x_1, \ldots, x_n) + \omega(x_1, \ldots, x_n)) = \phi_r(g(x_1), \ldots, g(x_n)) + O(r+2) \)

\[\iff \quad f(\phi_r(x_1, \ldots, x_n) + \Pi \omega(x_1, \ldots, x_n)) = \phi_r(g(x_1), \ldots, g(x_n)) + O(r+2) \]

\[\iff \quad f(\phi_r(x_1, \ldots, x_n)) - \phi_r(g(x_1), \ldots, g(x_n)) = \Pi \omega(x_1, \ldots, x_n) = O(r+2) \]

So (\(*\)) \(\Rightarrow\) \(\omega\) concentrated in degree \(d \geq 1\). Hence if we impose the condition that \(\omega\) be homogeneous of degree \(d+1\), then (\(*\)) becomes

\[f(\phi_r(x_1, \ldots, x_n)) - \phi_r(g(x_1), \ldots, g(x_n)) = \omega + O(r+2) \]

and \(\omega\) is uniquely determined as a poly. in \(K[x_1, \ldots, x_n]_{(r+1)}\).

By the fact that \(A\) is complete, \(\frac{1}{x^r - 1} \in \Lambda\).

Moreover, \(f(\phi_r(x_1, \ldots, x_n)) - \phi_r(g(x_1), \ldots, g(x_n)) \)

\[\equiv \phi_r(x_1, \ldots, x_n)^q - \phi_r(g(x_1), \ldots, x_n)^q \pmod{\Pi} \]

\[\equiv \phi_r(x_1, \ldots, x_n)^q - \phi_r(x_1, \ldots, x_n)^q \pmod{\Pi} \]

\[\equiv 0 \pmod{\Pi} \]
Hence
\[\frac{f(\phi(g(x), \ldots, g(x_n))) - \phi(g(x_1), \ldots, g(x_n))}{x_l(x_{l+1}) - x_l} \in A[x_1, \ldots, x_n]. \]

\[\Rightarrow \quad \mathbb{Q} \in A[x_1, \ldots, x_n] \quad \text{(v1)} \]

Corollary 1. Let \(A \) be a uniformizer and fix \(\phi \in F \). Then

(i) The power series \(F_\phi := \phi_{x+T}(\phi, \phi) \) is the unique formal group law over \(A \) such that \(\phi \in \text{End}_\mathbb{Z}(F_\phi) \).

(ii) The map \(A \rightarrow \text{End}_\mathbb{Z}(F_\phi), [a]_\phi := \phi_{aT}(\phi, \phi) \) is the unique ring homomorphism such that \([\pi]_\phi = \phi \) and \([a]_\phi = a + \phi(2) \forall a \in A \).

In particular, the formal \(A \)-module \((F_\phi, [-]_\phi) \) is Lubin-Tate for \(\pi \), and \((F_\phi, [-]_\phi) \) is the unique Lubin-Tate formal group such that \([\pi]_\phi = \phi \).

Proof: If \(G \in A[[x_1, y_1]] \) is a formal group over \(A \) such that \(\phi \in \text{End}_\mathbb{Z}(G) \), then \(G \) satisfies \(\boxplus_{x+y} \) and \(\boxtimes_{\phi} \).

Hence the uniqueness statement of the lemma gives that \(G = F_\phi \).

Thus to prove (i), it suffices to prove \(F_\phi \) satisfies:

(a) \(F_\phi(x, y) = F_\phi(y, x) \).

(b) \(F_\phi(x, F_\phi(y, z)) = F_\phi(F_\phi(x, y), z) \).
(a) Let \(G = F_e(Y, X) \). Then \(G(x, y) = x + y + c(2) \) and so \(G \) satisfies \(\Box_{x+y} \). Similarly,

\[
(e(G(x, y))) = (e(F_e(Y, X))) = F_e(e(x), e(y))
\]

\[
= G(e(x), e(y)). \quad \text{So } G \text{ satisfies } \Box_{e,e}.
\]

Hence \(F_e(Y, X) = G(U, Y) = F_e(x, y) \)

(b) Let \(H_1(X, Y, Z) = F_e(X, F_e(Y, Z)) \), \(H_2(X, Y, Z) = F_e(F_e(X, Y), Z) \).

We claim \(H_1 \) and \(H_2 \) both satisfy \(\Box_{x+y+z} \) and \(\Box_{e,e} \).

- \(H_1(X, Y, Z) = x + F_e(Y, Z) + c(2) = x + y + z + c(2) \),
 so \(H_1 \) satisfies \(\Box_{x+y+z} \).

- \(e(H_1(X, Y, Z)) = e(F_e(X, F_e(Y, Z))) = F_e(e(x), e(F_e(Y, Z)))
 = F_e(e(x), F_e(e(y), e(z)))
 = H_1(e(x), e(y), e(z)) \),
 so \(H_1 \) satisfies \(\Box_{e,e} \). The proofs for \(H_2 \) are exactly parallel. Hence \(H_1 = H_2 \) by uniqueness, \(\Box \) (i)

We will deduce (ii) from the following more general result, this will be of use in a later corollary.
Proposition: For \(\pi \in A \) a uniformizer and \(\psi, \epsilon \in F_{\pi} \) and \(\alpha \in A \), define \([\alpha] \psi, \epsilon = \Phi_{\pi T}(\psi, \epsilon) \). The following hold:

1. If \(\psi, \epsilon \in F_{\pi} \) and \(\alpha \in A \), \([\alpha] \psi, \epsilon \) is a homomorphism of formal groups \([\alpha] \psi, \epsilon : F_{\psi} \rightarrow F_{\psi} \).

2. If \(\psi, \epsilon, \rho \in F_{\pi} \) and \(\alpha, \beta \in A \), then

\[
(\ast) \quad [\alpha + \beta] \psi, \epsilon = [\alpha] \psi, \epsilon + [\beta] \psi, \epsilon
\]

\[
(\ast\ast) \quad [\alpha \beta] \psi, \epsilon = [\alpha] \psi, \epsilon \circ [\beta] \psi, \epsilon
\]

\[\text{(Ends an addition + } F_{\psi}\text{ Last Time).}\]

\[\text{Deduction of (ii).} \quad \text{As we've defined things } [\alpha] (\epsilon, \epsilon) \text{ for all } \alpha \in A. \text{ So part (i) of the proposition implies that } [\pi] (\epsilon, \epsilon) \text{ is well defined as a map of sets. By the uniqueness statement in the lemma } \Phi_{\pi T}(\epsilon, \epsilon) = (\epsilon), \text{ so } [\pi] (\epsilon, \epsilon) = \Phi_{\pi T}(\epsilon, \epsilon) = (\epsilon) \text{ and } [\pi] (\epsilon, \epsilon) \text{ satisfies the conditions of (ii). Again the uniqueness statement in the lemma implies that it is the unique set map satisfying these conditions.}\]

So all that remains is to prove \([\pi] (\epsilon, \epsilon) \) defines a ring homomorphism.
The uniqueness statement in the lemma gives that
\[[\gamma]_{[e]} = e \quad \text{and} \quad [e]_{[\gamma]} = e \]. The additivity and multiplicativity of \([\cdot, \cdot]_{[e]} \) are got by specialising statement \(1 \) of the proposition to the case of \(e = \gamma = e \). \(\square \)

Proof of Proposition:

(1) It suffices to show that
\[[e]_{[\gamma]} (F_e (x, T)) = F_{\gamma} ([e]_{[\gamma]} (F_e (x, T))) \]
Since \(F_e \) and \(F_{\gamma} \) are formal groups, and \([e]_{[\gamma]} \) satisfies \(\text{aT} \), the LHS and RHS of the equality satisfy \(\text{aT} \).

The LHS satisfies \(\text{aT} \) since
\[\Psi ([e]_{[\gamma]} (F_e (x, T))) = [e]_{[\gamma]} (F_e (x, T)) \]
\[= [e]_{[\gamma]} (F_e (e (x), e (T))) \]
By a parallel calculation, the RHS also satisfies \(\text{aT} \).

Hence the uniqueness statement of the lemma \(\Rightarrow \) (1).

(2) We check \((*)\) \([e + b]_{[\gamma]} = [e]_{[\gamma]} + F_{\gamma} [b]_{[\gamma]} \). The proof of \((***)\) is similar.

Since \((e + b)_{[\gamma]} (F_e (x, T)) = F_{\gamma} (e (x), e (T))\)
\[= F_{\gamma} (aT + c (2), bT + c (2)) = (a + b)T + c (2), \]
have that \[a_1 \psi, e + F_{\psi} [b_1 \psi, e] \text{ satisfies } \varphi (a+b)T. \]

Moreover \[\psi (a_1 \psi, e + F_{\psi} [b_1 \psi, e]) (T) \]
\[= \psi (F_{\psi} [a_1 \psi, e] (T), [b_1 \psi, e] (T)) \]
\[= F_{\psi} (\psi [a_1 \psi, e] (T)), \psi [b_1 \psi, e] (T)) \]
\[= F_{\psi} (\psi [a_1 \psi, e] (T)), \psi [b_1 \psi, e] (T)) \]
\[= (a_1 \psi, e + F_{\psi} [b_1 \psi, e]) (T) \].

Hence \[a_1 \psi, e + F_{\psi} [b_1 \psi, e] = [a+b] \psi, e \] by the uniqueness statement of the lemma.

Example: (The multiplicative group over \(\mathbb{Q}_p \)).

Let \(G_m (\mathbb{Q}_p) = (x+y+xy, [a_1] := (1+T)^{a_1-1}) \)
where \((1+T)^a = \sum_{m \geq 0} \binom{a}{m} \cdot T^m \) with \(\binom{a}{m} = \frac{a(a-1)\cdots(a-m+1)}{m(m-1)\cdots1} \)

[Note: for \(a \in \mathbb{Z} \), \(a_1 \mapsto \binom{a}{m} \) is \(p \)-adically continuous and so \(\binom{a}{m} \in \mathbb{Z}_p \) for \(a \in \mathbb{Z}_p \) and \(m \geq 0 \).

In the notation of Corollary 1, we claim that \(G_m (\mathbb{Q}_p) = (F_{\infty}, G^{-1}_{\infty}) \) for \(\varphi = (1+T)^{p-1} \).]
By Corollary 1 (i)
\[
(F_e = X + Y + XY) \iff (X + Y + XY \text{ is a formal group law})
\]
and
\[
(Q(X + Y + XY) = (Q(X) + Q(Y)) + Q(X)Q(Y)
\]
Thus by Corollary 1. (ii), showing \([a] \epsilon _{\text{even}} (1 + T)^a - 1\) will complete the proof of the claim. The coefficients of the above power series vary p-adically continuously with \(a\), so it suffices to check (A) when \(a\) is an integer. This amounts to showing that \((1 + T)^a - 1\) satisfies (A) for \(a \epsilon \mathbb{Z}\).
\(\Psi \) is immediate from the fact that \((\frac{a}{a}) = a\).
For (A),
\[
(1 + T)^a - 1 = (1 + (1 + T)^a - 1)^a - 1
\]
\[
= (1 + (1 + T)^a - 1)^a - 1
\]
\(\Psi \) (Example).

Corollary 2: \(\Phi A \) a uniformiser. \(e, \psi \epsilon \Phi \).

(a) If \(a \epsilon A\), then \([a] \psi, e = \Phi_a^{-1} (\psi, e)\) defines a homomorphism of formal \(A\)-modules \((F_{a, \epsilon} \rightarrow (F_{a, \epsilon}, e) \rightarrow (F_{\psi}, \epsilon)\).

(b) If \(u \epsilon A^\times\), then \(u \epsilon, \psi, e\) is an isomorphism with inverse \([u^{-1}] (\psi, e)\). In particular, there is a canonical formal \(A\)-module isomorphism \(\epsilon) : F_{\psi, e} \rightarrow F_{\psi}.

Corollary 2 \(\Rightarrow \) "It makes sense to talk about the Lubin-Tate formal group associated to \(\Psi\)".
Proof of Corollary 2. Part (b) follows from \(\square \).

corollary 2. (a) combined with Proposition 2 (***)

and the fact that \([a]_\psi, e = id_{\psi, e} \). So it suffices to prove (a). The fact that \([a]_\psi, e \) defines a homomorphism of formal groups was proven in Proposition 1. So it remains to check that \(A \) be \(A \),

\[
[a]_\psi, e \left([b]_\psi, e (T) \right) = [b]_\psi, e \left([a]_\psi, e (T) \right).
\]

Again this follows from Proposition 2 together with the observation that \(A \) is commutative and \([b]_\psi = [b]_\psi, \psi \) and \([b]_\psi = [b]_\psi, e \). \(\square \) (Corollary 2.)
Construction of K_{Λ}

Let K be a non-arch local field with $q = |K_K|$ (a power of p).

We have $K^{ab} = K_{\Lambda} \cdot K^{un}$, where $K^{un} = \bigcup_{m} K[[t_m]]$

for Λ_m = set of m^{th} roots of 1 in \mathbb{R}.

Our goal is to understand K_{Λ}.

Plan: Define the following objects:

$\Lambda_f \rightarrow \Lambda_n \rightarrow ... \rightarrow K_{\Lambda,n} \rightarrow K_{\Lambda}$

$K_{\Lambda} = \bigcup K_{\Lambda,n}$

tot. ram.

k

Consider f \in K on K extends uniquely to K_{Λ}.

K, $\pi \in \mathcal{O}_K$ uniformizer.

$f \in \mathcal{F}_\pi$ i.e., $f(x) \in \mathcal{O}_K[[x]]$ s.t.

$f(x) = \pi x + \text{terms of deg } \geq 2$

$f(x) \equiv x^2 \pmod{\pi}$
Given \(f \in F_\tau \), \(\exists \) a unique Lubin-Tate formal group law \(F_f \) with coeffs in \(O_\kappa \) and admitting \(f \) as an endomorphism.

\[\Lambda_f := \Sigma \alpha \in \mathbb{K} : |\alpha| < 13 \quad \text{(as a set)} \]

Ab. gp. structure: \(\alpha +_f \beta := \alpha + F_f(\beta) \)

(Converges.) \(\checkmark \)

\(O_\kappa \)-mod. structure: \(\alpha * \alpha = [\alpha]_f(\alpha) \)

(Converges.) \(\checkmark \)

\[\underline{\Lambda_f} \]

\(\Lambda_n \) submodule of \(\Lambda_f \) of elts killed by \([\pi]_f^n \)

\(R_k: f, g \in F_\tau \) then \([i]_{g,f}: F_f \xrightarrow{\sim} F_g \)

induces \(\Lambda_f \xrightarrow{\sim} \Lambda_g \).
\[[\pi]_\nu(T) = f(T) \Rightarrow \]
\[\Lambda_n = \sum_{\alpha \in \mathbb{K}}: f^n(\alpha) = 0, \quad |\alpha| < 1 \text{.} \]

\((f^n = f \circ \cdots \circ f) \quad \text{Using } \ast \text{ take } f = \pi T + T^2 \)

\[\text{Show: } f^n(\alpha) = 0 \quad \Rightarrow \quad |\alpha| < 1 \quad \alpha \in \mathbb{K} \]

\[f^n(\alpha) = \alpha^n + \pi(\cdots) \]

\[\alpha \text{ root of monic poly over } \mathbb{O}_K \Rightarrow |\alpha| \leq 1 \]

Thm 4', ch. 23, Lorenz.

Then strong A ineq \(\Rightarrow \) \(|\alpha| < 1 \).

Then:

\[\Lambda_n = \sum_{\alpha \in \mathbb{E}}: f^n(\alpha) = 0, \text{ as } \mathbb{O}_K \text{-modules.} \]

\(\text{Prop. } \Lambda_n \cong \mathbb{O}_K/(\pi^n) \) as \(\mathbb{O}_K \)-modules.

Hence, \(\text{End}_{\mathbb{O}_K}(\Lambda_n) \cong \mathbb{O}_K/(\pi^n) \)

\[\text{Aut}_{\mathbb{O}_K}(\Lambda_n) \cong (\mathbb{O}_K/(\pi^n))^* \]

\(A := \mathbb{O}_K \).

Lemma: \(M \) an \(A \)-module. \(M_n := \ker (\pi^n : M \rightarrow M) \).

(3.3) Assume: (a) \(M_1 \) has \(q := |A/\pi| \) elts.

(b) \(\pi : M \rightarrow M \) surj.

Then, \(M_n = A/(\pi^n) \); \text{(it is)} \(M_n \) has \(q^n \) elts.
PF of lemma:

1. M_n torsion module over A by def.
2. PID with unique prime
 (up to conjugacy)

if M_n f.g.

$\Rightarrow M_n \cong A/(\pi_{n_1}) \oplus \cdots \oplus A/(\pi_{n_r})$

$n_1 \leq n_2 \leq \cdots \leq n_r$ (unique)

Induction on n:
2. $A/(\pi^n)$ has q^n elts.

PF of lemma:

Induction on n.
3. $n = 1$
 (a) $\#M_1 = q = \#(A/(\pi))^1$ $\Rightarrow M_1 \cong A/(\pi)$.

and (1) (structure thm) above

Assume for $n - 1$. Consider n.

Have:

$0 \rightarrow M_1 \rightarrow M_n \rightarrow M_{n-1} \rightarrow 0$

\text{(inclusion)}

\text{surj} : x \in M_{n-1} \rightarrow CM

$M_n \subseteq CM$ clearly.

$\Rightarrow \exists y \in M_{n-1}$ s.t.

$x = \pi y$ by (b)

\text{And } y \in M_n, b/c,$

$\Rightarrow \pi^n(y) = \pi^{n-1}(\pi y) = 0$

\text{for}

$x = \pi y \in M_{n-1}$.

$\Rightarrow \ker \pi = \text{im}(\iota)$

\text{ker} $\pi = \text{im}(\iota)$

$\Leftrightarrow x \in \ker \pi \Leftrightarrow \pi x = 0$ $\Rightarrow x \in M_1$
Consequences:

\[M_{n-1} \cong M_n / \ker(\pi) \Rightarrow |M_n| = |M_{n-1}| |M_1| = q^{n-1} \cdot q = q^n. \]

And

\[\pi_{|M_{n-1}} \text{ cyclic } \quad \Rightarrow \quad M_n \text{ cyclic}. \]

\[\pi \text{ surj } (\pi : M \to M) \]

And

Using Notes (i) & (ii) above:

\[M_n \cong A / (\pi^n). \]

pf. of prop:

Set \(M = A_f \).

Want:

\[a) \ker(\pi) : \ A_f \to A_f \text{ has } q \text{ elts.} \]

i.e.

\[f \text{ has } q \text{ distinct roots.} \]

\[b) \pi : A_f \to A_f \text{ is surj.} \]

i.e.

\[\forall \ a \in \mathbb{R}, \ \exists \beta \text{ s.t. } f(\beta) - a = 0 \text{ and } |\beta| < 1. \]
(a) \[f(x) = x^q + \pi^x = x (x^{\frac{q-1}{2}} + \pi). \]

Differentiate \(x^q + \pi \) separable with \((q-1) x^{q-2} \) non-zero roots \(\downarrow \)

\[x^q + \pi x \] separable.

(b) \(\alpha \in \mathbb{R}, 1\alpha 1 < 1 \).

\[f(r) = r^q + \pi r - \alpha \] has a root \(\beta \in \mathbb{R} \).

Then, \[\beta^q + \pi \beta - \alpha = 0 \]

\[|\pi| < 1, |\alpha/| < 1 \]

\[\Rightarrow |\beta| < 1. \]

\(\Rightarrow \) Thm 4', ch 23 (Lorenz).

Then, \[|\beta|^q \leq \max(\pi |\beta|, |\alpha|) < 1 \]

\[\Rightarrow |\beta| < 1. \]
So, $\Lambda_n \cong \mathcal{O}_k/(\pi^n)$ by lemma 3.3.

And $\text{End}_{\mathcal{O}_k}(\Lambda_n) \cong \text{End}_{\mathcal{O}_k}(\mathcal{O}_k/(\pi^n)) \cong \mathcal{O}_k/(\pi^n)$.

\[\gamma \in \text{End}_{\mathcal{O}_k}(\mathcal{O}_k/(\pi^n)) \text{ is det. by} \]

\[\gamma : \mathcal{O}_k \rightarrow \mathcal{O}_k, \quad \pi^n \rightarrow 0. \]

Taking units,

\[\text{Aut}_{\mathcal{O}_k}(\Lambda_n) \cong (\mathcal{O}_k/(\pi^n))^\times. \]

\[\text{Lemma:} \]

(3.5) \quad \text{Finitely generated } \mathcal{O}_k \text{-modules } \mathcal{F} \in \mathcal{O}_k[[x_1, \ldots, x_n]]

\[\text{local.} \]

\[\mathcal{F}(x_1, \ldots, x_n) = \mathcal{F}(x_1, \ldots, x_n) \]

\[\forall \gamma \in G. \]

\[\text{pf: } \mathcal{F} \text{ poly: follows from } \gamma \text{ fixes } \mathcal{O}_k. \]

\[|x_i| = 1 \text{ for all } x_i \text{ if 1.1 extends uniquely to } \gamma. \]

\[\implies \gamma \text{ cont.'s. } \implies \gamma \text{ preserves limits.} \]
\[F_m \quad \text{by Def} \quad F_m \text{ by} \]

\[F = F_m + \text{terms of deg } \geq m + 1 \]

\[\tau(F(\alpha_1, \ldots)) = \tau\left(\lim_{m \to \infty} F_m(\alpha_1, \ldots)\right) \]

\[= \lim_{m \to \infty} \tau F_m(\alpha_1, \ldots) \]

\[= \lim_{m \to \infty} F_m(\tau \alpha_1, \ldots) \]

\[= F(\tau \alpha_1, \ldots) \quad \Box \]

Thm \[K_{\pi, n} = K[\Lambda_n] \subset K \quad , \quad A = C_{0, \pi} \]

(a) \[K_{\pi, n} \quad \text{tot. ram. , } \deg (q - 1) q^{n-1} \]

(b) \[A \cap \Lambda_n \] defines \[\left(A / \eta h\right)^x \to \text{Gal}(K_{\pi, n} / k). \]

\[\Rightarrow \text{ ab.} \]

(c) \[\forall n, \pi \text{ is a norm from } K_{\pi, n}. \]
pf: \[f(T) = \pi_1 T + T^2, \quad \pi_1 \text{ a root of } f(T) \Rightarrow \pi_n \text{ a root of } f(T) - \pi_{n-1}. \]

\[K[\pi_1] \supset K[\pi_n] \supset \cdots \supset K[\pi_1] \supset K. \]

Consider \(K[\pi_r] \)

\[\phi_r(x) = x^q + \pi x - \pi_{r-1} \quad \text{Eisenstein over } (\mathcal{O}_{K[\pi_{r-1}]}) \]

\[\text{of degree } q. \]

\(K[\pi_1] \)

\[\phi_1(x) = \pi x + x^q = \pi + x^{q-1} \quad \text{Eisenstein of deg } q-1, \]

\(\text{tot ram of deg } q-1. \)

\[K[\pi_n] \]

\[\text{tot ram, deg } q^{n-1}(q-1). \]

\(K \)
$\Lambda_n = \text{roots of } f^{(n)} \text{ in } K$

$\therefore K[\Lambda_n] = \text{splitting field of } f^{(n)}.$

$\Rightarrow \text{Gal} (K[\Lambda_n]/K) < \text{group of permutations of } \Lambda_n.$

Lemma 3.3 \Rightarrow

$\exists \text{ Gal} (K[\Lambda_n]/K) \text{ acts on } \Lambda_n \text{ as an } A - \text{mod isom.}$

$\therefore \text{ Gal} (K[\Lambda_n]/K) \hookrightarrow \text{ Aut}_A (\Lambda_n)$

$= (A/(\pi^n))^\times.$

$| (A/(\pi^n))^\times | = q^\phi (q-1) - q^{n-1} (q-1).$

$b/c \quad u^{(n)} \subseteq u^{(1)} \subseteq u^{(0)} = A.$

$\left| \frac{u^{(0)}}{u^{(n)}} \right| = \left| \frac{u^{(0)}}{u^{(1)}} \right| \frac{U^{(1)}}{U^{(2)}} \cdots \frac{U^{(n-1)}}{U^{(n)}}$

$= \left(q^{\phi (q-1)} \right)^{n-1} \left(q^{\phi (q-1)} \right)^{n-1}$

$\therefore (q-1) q^{n-1} \geq \left| \text{Gal} (K[\Lambda_n]/K) \right|$

$[K[\Lambda_n]:K] \geq [K[\pi_n]:K] = (q-1) q^{n-1}.$

$\Rightarrow \text{equality.}$

$\Rightarrow \text{ Gal} (K[\Lambda_n]/K) \cong \left(\frac{A}{(\pi^n)} \right)^\times \ & K[\Lambda_n]$
(c) \[f^{[n]}(\tau) = \left(f_{-1} \right)^n \cdot f_1 \]

\[f^{[n]}(\tau) = \prod_{i=0}^{n-1} (\tau - \pi_i) \quad \text{deg} = [K(\pi_n) : K] \]

\[f^{[n]}(\pi_n) = f^{[n-1]}(\pi_{n-1}) = \ldots = f(\pi_1) = 0 . \]

\[f^{[n]} \quad \text{mini poly of } \pi_n / K . \]

\[\Rightarrow N^m_{K(\pi_n)/K}(\pi_n) = (-1)^{n-1} q^{(q-1)} \pi \]

\[q^{n-1} (q-1) \quad \text{even when } n \geq 2 , \]

\[\text{unless } 2 \mid q , \quad n = 1 . \]

\[\text{When, } n = 1 , \]

\[\Rightarrow \lambda_i = \text{roots of } T(\pi_n + \tau) \]

\[\Rightarrow K[\lambda_i] = K \quad \Rightarrow \pi \text{ is a norm .} \]