WEEK
3.
Converse: K with $1:1$ non-archimedean (non-trivial)

If K locally compact, then:

1. k finite
2. 1×1 discrete
3. K complete

[i.e. every $x \in K$
admits open neighborhood $U \ni x$
which is contained in a compact set:
$x \in U \subseteq C$.]

equivalently: closed balls are compact, e.g., \mathbb{R}.

Know: \mathbb{R} compact $\iff k$ finite.

Completeness:

1. $\{x_n\}$ in K Cauchy, then bounded $\subseteq B_r(0)$
2. By compactness \exists conv. subseq. x_{n_i}. Being Cauchy, x_n itself conv.

Discreteness:

Otherwise, there's some $c > 0$ admitting
a sequence $\{x_n\} \to c$ w. distinct terms,
(x_n) bounded. As above,
extract $x_{n_i} \to x$.

$(\exists x|c|)$. However,

$\|x_n\| = \max\{\|x_1\|, \|x_n - x_1\| \leq \|x_1 - c\| \implies \|x_n\| < \|x_1\| + c\}$

for $n \gg 0$. small contradiction. \checkmark
LATER:

Classification: If K admits a non-trivial $|.|$
so K is locally compact ("local field") then
1) $K = \mathbb{R}$ or $K = \mathbb{C}$ — archimedean case,
2) K/\mathbb{Q} finite ext.
3) $K = k((t))$ for finite k.

(and conv.) equivalently $K/\mathbb{F}_p((t))$ fin. ext.

GLOBAL fields are:
- number fields: fin. K/\mathbb{Q}
- function fields: fin. $K/\mathbb{F}_p(t)$

will show all local fields are completions of global fields, and vice versa.

Back to non-arch. locally compact $(K, |.|)$:

Def. The "normalized" abs. value on K is

$$|x|_K = q^{-v_K(x)}$$

where $q = |k|$ (and $v_K: K^\times \rightarrow \mathbb{Z}$ valuation $v_K(x\pi^v) = v$)

Note: Balls B_1, m only dep. $1/\pi$ up to equivalence.
"uniformizer" π is a generator for m.
Given $x \in R$. Pick the $a_0 \in S$ with $x \equiv a_0 \pmod{m}$.

Continue:

$$\begin{cases} x_1 &= a_1 + \pi x_2 \\ x_2 &= a_2 + \pi x_3 \\ \vdots & \end{cases}$$

Combined, $\forall n$,

$$x = a_0 + \pi (a_1 + \pi x_2) = a_0 + a_1 \pi + \pi^2 x_2 = \cdots$$

$$a_0 + a_1 \pi + \cdots + a_n \pi^n + o \pi^{n+1} x_{n+1} \downarrow 0$$
Show $x \in K$ has a unique expansion:

$$x = \sum_{n=0}^{\infty} a_n \pi^{-n} \text{ with all } a_n \in S.$$

Conversely, if K complete, every such sum converges.
Thus any $x \in K$ is given by a "Laurent series":

$$x = \sum_{n=-\infty}^{\infty} a_n \pi^{-n} \text{ with } a_n \in S$$

(and vice versa if K complete).

Ex. Elements of \mathbb{Z}_p are $x = \sum_{n=0}^{\infty} a_n p^n$ with $0 \leq a_n < p$. Evaluation at p:

$q: \mathbb{Z}[[X]] \to \mathbb{Z}_p$ has $\ker(q) = (X-p) \quad \text{ (uncountable!)}$

$$X \mapsto p \quad \text{ (} \leq \text{ dim}=2\text{)}$$

Ex. Elements of $\widehat{k(t)}$ (completion rel. $1-t$) are formal Laurent series $\sum_{n=-\infty}^{\infty} a_n t^n$ with $a_n \in k$. Even here: $\widehat{k(t)} \cong k((t^\infty)$ since in this ex. S closed under $+$ and \cdot.

[In general, adding/multiplying π-expansions complicated.]
Haar measure \(\mu \) on a locally compact Hausdorff top. group \(G \) (e.g., \(K \) with +)

- **Borel sets:** \(\Sigma \) o-alg. generated by open subsets.
 - Closed under complement, countable unions & intersections.
 - Contains \(\emptyset \) and \(G \).

A measure is \(\mu : \Sigma \to IR \cup \{0\} \) s.t.

a) \(\mu(E) \geq 0 \) \(\forall E \in \Sigma \).

b) \(\mu(\emptyset) = 0 \)

c) Countably additive, i.e.,

\[\mu \left(\bigcup_{n=1}^{\infty} E_n \right) = \sum_{n=1}^{\infty} \mu(E_n) \]

for \(E_1, E_2, \ldots \) pairwise disjoint.

Thm (Haar) There's a Borel measure \(\mu \) on \(G \):

i) Translation invariant: \(\mu(xE) = \mu(E) \) all \(x \in G \).

ii) \(\mu(E) < \infty \) for compact \(E \).

iii) Outer regular: \(\forall E \in \Sigma \),

\[\mu(E) = \inf \left\{ \mu(U) : U \supseteq E \text{ open} \right\} \]

iv) Inner regular: \(\forall \text{ open } E \),

\[\mu(E) = \sup \left\{ \mu(C) : C \subseteq E \text{ cpt.} \right\} \]

Such \(\mu \) is unique up to \(c > 0 \).
\(\mathbb{K} = \mathbb{K} \) \(\mu = \text{Lebesgue measure}, \ \mu(x + E) = \mu(E) \)

--- get \(\mu \) on our (non-arch.) \(\mathbb{K} \) \(\text{local field} \) \(\text{(add. group)} \)

Let \(x \leq K^\times \). Consider \(E \rightarrow \mu_x(E) \)

\(\Xi \sim \) another Haar measure.

By uniqueness, (translation - invt.?) \(\mu_x(a + E) = \mu(xa + xE) = \mu(xE) = \mu_x(E) \) ?

\(\mu_x(E) = \mu(x \cdot E) = c_x \mu(E), \ \forall E \in \Xi \).

Claim: \(c_x = |x|_K \) (= normalized abs. value.)

Why? 1st check i.e., \(\mu(xE) = |x|_K \mu(E) \).

\(|x| := c_x \) def. an abs. value on \(K \).

multiplicative \(\\checkmark \) strong triangle ineq.: Suppose \(\forall x \in K \), i.e. \(y \in xR \).

\(\|x + y\| \leq \mu(E) = \mu((x + y)E) \)

Take \(E = \mathbb{R} \) here \(\leq \mu(xE) = \|x\| \mu(E) \).

By regularity \(\mu(E) \neq 0 \). Thus

\(\|x + y\| \leq \|x\| = \max \{ \|x\|, \|y\| \} \)

--- take \(E = \mathbb{R} \) here

Thus \(y \in xR \) implies \(\mu(yR) \leq \mu(xR) \) i.e., \(\|y\| \leq \|x\| \).
REMAINS: \[11 \pi = q^{-1} \quad (i.e., \mu(\pi R) = q^{-1} \mu(R)) \]

Note: \(\pi R = m \), so \(R = \bigcup x + m \)

\[\Rightarrow \mu(R) = \sum_{x \in S} \mu(x + m) \quad \text{representatives for \(k \)} \]

\[= \sum_{x \in S} \mu(m) = q \mu(\pi R) \]

Remark:

\[= \sum_{x \in S} \mu(m) = q \mu(\pi R) \]

For \(C \):

\[\mu(x E) = |x|_2^2 \cdot \mu(E) \]

\((E \subseteq B \text{ opt. ball say}) \quad \text{not an abs. value} \)

\(x \in E \text{ scale radius by } |x|_\infty = \text{modulus} \)
Newton's Method: \(K \) with non-arch. 1-1, complete, \(R \), \(\mathbb{D} \).
\[f(x) = a_0 + a_1 x + \ldots + a_n x^n \in R[x] \]
(not nec. discrete)

Suppose \(x_0 \in R \) sat. \(|f(x_0)| < |f'(x_0)|^2 \).

Def. \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \) \(\quad (\forall n > 0) \) "Newton"

Claim: Well-defined, i.e. all \(f'(x_n) \neq 0 \).
- In fact, \(|f'(x_n)| = \ldots = |f'(x_0)|. \)

More importantly:

- \((x_n) \) converges, and \(x := \lim_{n \to \infty} x_n \in R \) is a root of \(f \).

\[|x - x_0| \leq \left| \frac{f(x_0)}{f'(x_0)^2} \right| < 1. \]

Why? Let \(c = \left| \frac{f(x_0)}{f'(x_0)^2} \right| < 1. \)

- By induction we'll show:
 (i) \(|x_n| < 1 \)
 (ii) \(|x_n - x_0| < c \)
 (iii) \(|f(x_n)| \leq c^{2n} |f'(x_n)|^2 \)

\((n = 0 \text{ ok}) \).
Assume $n \geq 0$ and ok for n. First, knowing $\frac{|f'(\alpha_n)|}{f'(\alpha_n)^2} \leq c^{2n}$ gives (by def. α_{n+1}):

$$|\alpha_{n+1} - \alpha_n| \leq c^{2n}$$

- in particular this is < 1
and thus $|\alpha_{n+1}| \leq 1$; (i) (since $|\alpha_n| \leq 1$)

For (ii) note:

$$|\alpha_{n+1} - \alpha_0| \leq \max\{ |\alpha_{n+1} - \alpha_n|, |\alpha_n - \alpha_0| \} = c^{2n} \leq c$$

Finally (iii): Taylor,

$$f(\alpha_{n+1}) = f(\alpha_n) - f'(\alpha_n) \cdot \frac{f(\alpha_n)}{f'(\alpha_n)} + c^2 \left(\frac{f(\alpha_n)^2}{f'(\alpha_n)^2} \right) + \ldots$$

Thus, $\beta \in \mathbb{R}$,

$$|f(\alpha_{n+1})| \leq \left| \frac{f(\alpha_n)}{f'(\alpha_n)} \right|^2 =: e^2$$

Combine this with Taylor for f':

$$f'(\alpha_{n+1}) = f'(\alpha_n) - f''(\alpha_n) \cdot \frac{f(\alpha_n)}{f'(\alpha_n)} + \ldots$$

abs $\geq \varepsilon$ abs $\leq \varepsilon$ abs $\leq \varepsilon^2$

Note: $\frac{f(\alpha_n)}{f'(\alpha_n)} = \beta \cdot \frac{f(\alpha_n)^2}{f'(\alpha_n)}$ for some $\beta \in \mathbb{R}$.

\[R \Rightarrow \text{ shows } \varepsilon \leq c^{2n} \]

\[\Rightarrow \text{ see next page.} \]
First term has \(|f'(c_{n})| \geq c^{-2n} \). \[
\left| \frac{f(c_{n})}{f'(c_{n})} \right| = \frac{c^{-2n}}{c^{-2n}} = c^{-2n} > \varepsilon. \]

Conclude (w. (ii)) that
\[
\left| \frac{f(c_{n+1})}{f'(c_{n+1})} \right| \leq \left| \frac{f(c_{n})}{f'(c_{n})} \right|^2 \cdot \frac{1}{|f'(c_{n})|^2} = \left| \frac{f(c_{n})}{f'(c_{n})} \right|^2 \leq c^{2n+1} \]

Shows (i) \(\Rightarrow \) (iii).

Back to claim: \(\square \) shows \((c_{n}) \) is Cauchy.

By (iii), \(\alpha \) is definite integral \(\alpha = \lim_{n \to \infty} \alpha_{n} \) (K complete.)

\(f(n) \to f(\alpha) = 0. \) root.

At least, check \(|\alpha_{n} - \alpha| \leq c \) in (ii). Let \(n \to \infty \).

Summary: K complete (non-arch.)

\(f \in \mathbb{R}[x] \). Suppose \(\alpha_{0} \in \mathbb{R} \) s.t. \(|f(\alpha_{0})| < |f'(\alpha_{0})| \).

Then \(\exists \alpha_{1} \in \mathbb{R} \) s.t. \((1) f(\alpha) = 0 \)

\((2) |\alpha - \alpha_{0}| \leq \left| \frac{f(\alpha_{0})}{f'(\alpha_{0})} \right| < 1. \)