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NUMBER THEORETIC BACKGROUND

J. TATE

1. Weil Groups. If G is a topological group we shall let G¢ denote the closure of
the commutator subgroup of G, and G** = G/G° the maximal abelian Hausdorff
quotient of G. Recall that if H is a closed subgroup of finite index in G there is a
transfer homomorphism ¢: G®® —» H?, defined as follows: if s: H\G — G is any
section, then for ge G,

WgG) = Il h,, (mod H),
x€H\G
where h, . € H is defined by s(x)g = £, s (xg).

(1.1) Definition of Weil group. Let F be a local or global field and F a separable
algebraic closure of F. Let E, E’, --- denote finite extensions of Fin F. For each such
E, let Gz = Gal(F/E). A Weil group for F/F is not really just a group but a triple
(Wk, ¢, {rg}). The first two ingredients are a topological group W and a continu-
ous homomorphism ¢: W; — G with dense image. Given Wy and ¢, we put
Wy = ¢ 1(Gg) for each finite extension E of F in F. The continuity of ¢ just means
that Wy is open in Wy for each E, and its having dense image means that ¢ induces
a bijection of homogeneous spaces:

WF/WE [ERAAN GF/GE 4 HOmF(E, F)

for each F, and in particular, a group isomorphism Wp/W, ~ Gal(E[F) when E/F
is Galois. The last ingredient of a Weil group is, for each E, an isomorphism of
topological groups rg: Cyp = W%, where

- {The multiplicative group E* of E in the local case,
E ™ \the idele-class group A%/E* in the global case.

In order to constitute a Weil group these ingredients must satisfy four conditions:
(W,) For each E, the composed map
CE~ E’ Wﬁb induced by ¢ GaEb
is the reciprocity law homomorphism of class field theory.
(Wy) Let we Wi and 0 = ¢(w) € Gy. For each E the following diagram is com-
mutative:
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E
Cp wg
induced conjugation
by ¢ by w
l oo
Cgo E Wb
(W3) For E' ¢ Ethe diagram
YE'
Cy W
induced by
inclusion transfer
E'cE
r
E
Cy Wb
is commutative.
(W,) The natural map

W p—— proj Elim{ We,r}

is an isomorphism of topological groups, where
(1.1.1) Wg, p denotes Wip/W§g  (not Wg/Wpg),

and the projective limit is taken over all E, ordered by inclusion, as E — F.

This concludes our definition of Weil group. It is clear from the definition that if
W is a Weil group for F/F, then, for each finite extension E of F in F, Wy (fur-
nished with the restriction of ¢ and the isomorphisms rg. for E' o E) is a Weil
group for F/E.

If Wy is a Weil group, then for each F = E’ — E the diagram

"E

Cy wg
norm, l induced by
(1 22) Ng/g’ linclusion WegcWEg’
rot
Cg £ Wb

is commutative.
"This follows from the fact that, when H is a normal subgroup of finite index n G,
the composition

induced by
Hzb inclusion Gab transfer Ha

is the map which takes an element & € H into the product of its conjugates by re-
presentatives of elements of G/H. (In the notation of the first paragraph above,
hg = s(x) gs(x)"1, ifge H = G)

(1.2) Cohomology; construction of Weil groups. Let Wy be a Weil group for F/F.
Then for each Galois E/F the group Wy, = W/ W§ is an extension of Wp/Wy =
Gal(E/F) by Wg/Wg ~ Cg. Let ag, r € H{Gal(E[F), Cg) denote the class of this
group extension. Foreachn e Z, let

(1.2.3) a(E/F): H(Gal(EJF), Z) —> H2(Gal(E/F), Cg)
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be the map given by cup product with az, . Since Cg, — CSE/E? ig 3 bijection for
F < E' < E, the property (W3) above implies, via an abstract cohomological
theorem (combine the corollary of p. 184 of [AT] with Theorem 12, p. 154, of [S1)),
that «,(E/F) is an isomorphism for every n. Moreover, the canonical classes are
interrelated by

(12.4) infl Aprp = [E:E,]O{E/F and res Ap/F = Qg

(for the first, use Theorem 6 on p. 188 of [AT]; the second is obvious). Thus, implicit
in the existence of Weil groups is all the cohomology of class field theory.

For example, taking n = —1in (1.2.3) we find HY(Gal(E/F), Cz) = 0. Taking
n = 0, we find H%(Gal(E/F), Cg) is cyclic of order[E:F], generated by az, r. Taking
n = —2 we find an isomorphism G¥)r  Cr/Ng,Cy which, by (W)), is that given
by the reciprocity law. For E/F cyclic, this isomorphism determines aj, r, and it
follows that ag,p is the “canonical” or “fundamental” class of class field theory.
The same is true for arbitrary E/F as one sees by taking a cyclic E;/F of the same de-
gree as E/F, and inflating g, r and ag,,r to EE;/F, where they are equal by (1 2.4).

Conversely, if we are given classes ag,z- satisfying (1.2.4) and such that the maps
(1.2.3) are isomorphisms, then we can construct a Weil group W as the projective
limit of group extensions Wy, made with these classes. This construction is ab-
stracted and carried out in great detail in Chapter XIV of [AT]. The existence of
such classes az/z- is proved in [AT] and [CF].

Thus, a Weil group exists for every F; to what extent is it unique?

(1.3) Unicity. A Weil group for F/Fis unique up to isomorphism. More precisely:

(1.3.1) PROPOSITION. Let Wy and Wy be two Weil groups for F|F. There exists an
isomorphism 0: Wy = Wy such that the diagrams

W wg
9
"E
0 Gr and Cg induced by 0
9’ e
W (Wg)™

are commutative.

For each finite Galois E/F, let I(E) denote the set of isomorphisms fsuch that the
following diagram is commutative

00— Cp — Wg)p —— Gal(E/F)—— 0

Since the two group extensions Wy, rand W, each have the same class, namely
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the canonical class ag,z, as their cohomology class, I(E)is not empty. Since
HY(Gal(E/F), Cg) = 0, an isomorphism fe I(E) is determined up to composing
with an inner automorphism of Wy, » by an element of Cz = W#%. The center of
Wy, is Cr, and Cg/Cp is compact. Hence I(E), as principal homogeneous space
for Cy/Cj, has a natural compact topology. For E; o E, the natural map I(E;) —
I(E) is continuous for this topology, since it is reflected in the norm map Ng,g,
once we pick an element of I(E;). Hence the projective limit proj limg(I(E)) is not
empty. An element § of this limit gives an isomorphism Wg—= Wy by (W), and
has the required properties.

It turns out (cf. (1.5.2)) that @ is unique up to an inner automorphism of Wy by
an element w € Ker ¢, but we postpone the discussion of this question until after
the next section.

(1.4) Special cases. We discuss now the special features of the four cases: F local
nonarchimedean, F a global function field, F local archimedean, and F a global
number field. In the first two of these, G is a completion of Wy; in the last two it is
a quotient of Wp.

(1.4.1) F local nonarchimedean. For each E, let kg be the residue field of E and
gr = Card(kg). Letk = | Jgkg. We can take Wy to be the dense subgroup of Gy
comnsisting of the elements ¢ € G which induce on k the map x — x% for some
ne Z. Thus Wy contains the inertia group Ir (the subgroup of Gy fixing k), and
W/I. ~ Z. The topology in W; is that for which 7 gets the profinite topology
induced from Gy, and is open in W. The map ¢: Wy — G is the inclusion, and the
maps rg: E* — W3 are the reciprocity law homomorphisms. Concerning the sign
of the reciprocity law, our convention will be that rg(a) acts as x — x'alz on k,
where ||a| ¢ is the normed absolute value of an element @ € E*. (If 7 is a uniform-
izer in E, then | zzllz = ¢g!; thus our convention is that uniformizers correspond
to the inverse of the Frobenius automorphism, as in Deligne [D3}, opposite to the
convention used in [D1], [AT], [CF], and [S1].)

(1.4.2) F a global function field. Here the picture is as in (1.4.1). Just change “‘re-
sidue field” to “constant field”, “inertia group Iz~ to “geometric Galois group
Gal(F/Fk)”, and define the norm ||a| ¢ of an idele class a € C to be the product of
the normed absolute values of the components of an idele representing the class.

(1.4.3) F local archimedean. If F ~ C we can take Wy = F*, ¢ the trivial map, rz
the identity.

If F~ R, 'we can take W = F* |J jF* with the rules j2 = —1 and jgj™! = ¢,
where ¢ — ¢ is the nontrivial element of Gal(F/F). The map ¢ takes F* to 1 and
JjF*to that nontrivial element. The map rz is the identity, and rz is characterized by

re(—1) = jW§,
r{x) = 4/x Wg for xeF, x > 0.

(W is the “unit circle” of elements u € F with Jlull = Nppu = 1)

(1.4.9) F a global number field. This is the only case in which there is, at present,
no simple description of W, but merely the artificial construction by cocycles
described in (1.2). This construction is due to Weil in [W1], where he emphasizes the
importance of the problem of finding a more natural construction, and proves the
following facts. The map ¢: Wy — Gp is surjective. Its kernel is the connected com-
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ponent of identity in W, isomorphic to the inverse limit, under the norm maps
N, of the connected components Dy of 1 in C. These norm maps Dy — Dg. are
surjective, and rg(Dg) = (Ker ) W§g/ Wgis the image of Ker ¢ in Wi, g If Ehas r, real
and r, complex places then Dy is isomorphic to the product of R with ry+ry —1
solenoids and 7, circles.

(1.4.5) Notice that in each of the four cases just discussed the subgroups of Wy
which are of the form Wj, for some finite extension E of F are just the open sub-
groups of finite index. Their intersection, Ker ¢, is a divisible connected abelian
group, trivial in the first two cases, isomorphic to C* in the third, and enormous in
the last case.

(1.4.6) In each case there is a homomorphism w + ||w| of W} into the multipli-
cative group of strictly positive real numbers which reflects the norm or normed
absolute value on Cp under the isomorphism rp : Cr ~ Wb, By (1.1.2) and the
rule | Nz, ralr = |allg, the restriction of this “norm” function flw|l from Wgto a
subgroup Wj is the norm function for W, so we can write simply | w|| instead of
[wl r without creating confusion. In each case the kernel W} of w — lIwll is com-
pact. In the first two cases, the image of w — [jw|| consists of the powers of g, and
Wr is a semidirect product Z x W. In the last two cases w — [|w| is surjective,
and in fact, W is a direct product R x W3,

Let us refer to the first two cases as the “Z-cases” and the last two as the “R-
cases”. In the Z-cases, ¢ is injective, but not surjective; in the R-cases, @ is surjec-
tive, but not injective.

(1.5) Automorphisms of Weil groups. Let Wy be a Weil group for F /F. Let
Aut(F, W) denote the set of pairs (¢, «), where ¢ € Gr is an automorphism of F/F,
and « is an automorphism of the group Wj such that the following diagrams are
commutative, the second for all E:

W L2 Gp Ce i wg

a Inn{a) induced induced
by o i»y a

W v Gr Cor T W8

Here Inn(a) denotes the inner automorphism defined by a.
We shall call an automorphism of Wy, essentially inner if it induces an inner au-
tomorphism on Wy,  for each finite Galois E/F.

(1.5.1) ProposITION. In the R-cases Aut(F, W) consists of the pairs (p(w),
Inn(w)), for we W,

In the Z-cases, Aut(F, Wy) consists of the pairs (o, ag), for o€ Gp, where o,
denotes the restriction of Inn(g) to Wy, viewed as a subgroup of Gy via . This
automorphism a, of Wy is not an inner automorphism if ¢ ¢ Wy, but it is essentially
inner in the sense of the definition above.

(1.5.2) CorOLLARY. The isomorphism 8 in (1.3.1) is unique in the Z-cases, and is
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unique to an inner automorphism of Wy by an element of the connected component
W3 = Ker ¢ in the R-cases.

To prove (1.5.1) in the R-cases, we note first that, since ¢ is surjective, we are
reduced immediately to the case of the corollary: We must show that if (1, a) €
Aut(F, Wp), then & = Inn(w) for some w € W. Going back to the proof of (1.3.1)
with Wi = W we find that the group of these o’s is given by

projEIim (Ce/Cr) = projElim (CEICH (1 for norm 1)
= projElim Cé/projh}im C}  (by compacity)

= WOIZ O W*°h) (existence theorem; 0 for con-

nected component)
= WYz

as claimed, where Z is the center of W.

Suppose now we are in a Z-case. Since ¢ is injective, i.e., Wr < G, it is clear
that Aut(F, Wp) consists only of the pairs (s, «,). The center of Gr is 1, because
G/Gg ~ Gal(E/F)acts faithfully on Cy = G% for each finite Galois E/F. Hence,
since Wp is dense in Gp, @, is not an inner automorphism of Wy unless o€ Wp.
However, a, does induce an inner automorphism of W, - for finite E/F. Since Wr
is dense in Gy it suffices to prove this last statement for ¢ close to 1, say ¢ € Gg.
Then «, induces an isomorphism of the group extension 0 —» Cg - Wy, p —
Gal(E/F) — 0 which is identity on the extremities, and hence is an inner automor-
phism by an element of Cy, since H! (Gal(E/F), Cg) = 0.

(1.6) The local-global relationship. Suppose now Fis global. Let v be a place of F
and F, the completion of F at v. Let F(resp. F,) be a separable algebraic closure of
F (resp. F,) and let Wy (resp. Wp,) be a Weil group for F|F (resp. for F,|F,).

(1.6.1) PrOPOSITION. Let i, : F — F, be an F-homomorphism. For each finite ex-
tension E of Fin F, let E, = i(E)F, be the induced completion of E. There exists a
continuous homomorphism 0,: Wr, — Wi such that the following diagrams are com-
mutative

* ~
Wk, G, E; wgh
8, ir;d;zced "y ir;a;g:ced
1
W Gr Ck ~ Wb

where n, maps a € E¥ to the class of the idele whose v-component is a and whose other
components are 1.

If Fis a function field, then 6, is unique. In the number field case, d, is unique up
to composition with an inner automorphism of Wj defined by an element of the
connected component W§ = Ker ¢.

The proof of this is analogous to the proof of (1.3.1) and (1.5.1), using the stand-
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ard relationship between global and local canonical classes, and the vanishing of
Hl(Ga](Ev/Fv ’ CE)'
Combining (1.6.1) and (1.5.2) we obtain

COROLLARY. The diagram

Wr,

v

Wr Gr

is unique up fo isomorphism, and the automorphisms of it are the inner automorphisms
of W, defined by elements w eW®, which induce an automorphism of Wy, (i.e., for v
nonarchimedean, w fixed by G, ; for v archimedean, w a product of an element of W0
by an element of (W%Cr,).

2. Representations. Let G be a topological group. By a representation of G we
shall mean, in this section, a continuous homomorphism p: G — GL(V) where Vis
a finite-dimensional complex vector space. By a quasi-character of G we mean a
continuous homomorphism y: G — C*. If (p, V) is any representation of G, then
det p is a quasi-character which we may sometimes denote also by det V. The map
V — det V sets up a bijection between the isomorphism classes of representations
V of dimension 1 and quasi-characters. Of course we can identify quasi-characters
of G with quasi-characters of G,

We let M(G) denote the set of isomorphism classes of representations of G, and
R(G) the group of virtual representations. A function 1 on M(G) with values in an
abelian group X can be “extended” to a homomorphism R(G) — X if and only if it
is additive, i.e., satisfies (V) = AV") A(V") whenever 0 —» V' — V — V" — Qisan
exact sequence of representations of G.

(2.1) Let F be a local or global field, F an algebraic closure of F, and W, a Weil
group for F/F. Let (p, V') be a representation of Wy. Since Wy = proj lim {Wy,r}
and GL(V) has no nontrivial small subgroups, p must factor through Wy, p, for
some finite Galois extension E of Fin F. It follows that if « is an essentially inner
automorphism of Wy in the sense of (1.5), then V¢ ~ V. Thus essentially inner
automorphisms act as identity on M(Wy) and R(W5). By (1.5.1) we can therefore
safely think of M(Wy) as a set depending only on F, not on a particular choice of F
or of Weil group W5 for F/F, and the same for R(W5). In this sense, if v is a place
of a global F, the “restriction” map M(Wyr) - M(Wr) induced by the map 6, of
Proposition (1.6.1) depends only on v, not on a particular choice of the maps i, and
6, in that proposition, and the same for R(Wy) = R(Wp,). We shall indicate this
map by p — p, or ¥V V,. (The independence from 4, results from (1.6.1), and the
independence from i,, from (1.5.1).)

If E/F is any finite separable extension, we have canonical maps
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resg/p
restriction

R(WE) R(WE)

induction
Idg/F

satisfying the usual Frobenius reciprocity, for we can identify Wy with a closed
subgroup of finite index in Wr. ‘

(2.2) Quasi-characters and representations of Galois type. Using the isomorphism
Cr ~ W we can identify quasi-characters of Cr with quasi-characters of Wb,
For example, we will denote by w,, for s € C, the quasi-character of W associated
with the quasi-character ¢ — |/¢||%, where [ ¢ zis the norm of ¢ € Cp. Thus o(w) =
[lw} in the notation of (1.4).

On the other hand, since ¢: Wy — Gy has dense image, we can identify the set
M(Gp) of isomorphism classes of representations of G with a subset of M(Wy). We
will call the representations in this subset “of Galois type”. Thus, by (1.4.5), a re-
presentation p of W is of Galois type if and only if p( W) is finite.

With these identifications, a character y of Gy is identified with the character
of Cp to which y corresponds by the reciprocity law homomorphism.

(2.2.1) In the Z-cases, i.e., if £ is a global function field, or a nonarchimedean
local field, then every irreducible representation p of Wy is of the formp = ¢ ® w,,
where ¢ is of Galois type. This is a general fact about irreducible representations of
a group which is an extension of Z by a profinite group; some twist of p by a quasi-
character trivial on the profinite subgroup has a finite image; see [D3, §4.10].

(2.2.2) If Fis an archimedean local field, the quasi-characters of Wp, i.e., of F* ~
W2, are of the form y = z7Nw,, where z: F — Cis an embedding and N an integer
= 0, restricted to be 0 or 1if Fisreal. If Fis complex, these are the only irreducible
representations of F* = W;. If Fis real, W has an abelian subgroup Wy = F* of
index 2, and the irreducible representations of W which are not quasi-characters
are of the form p = Indp/r(z"Yw,) with N > 0. (For N = 0 this induced represen-
tation is reducible:

(2.2.2.1) Indﬁ/FCl)s = W & x_l(l)s_(_l

where x: F — C is the embedding of Fin C.)

(2.2.3) Suppose F is a global number field. A primitive (i.e., not induced from a
proper subgroup) irreducible representation p of Wy is of the form p =0 ® %
where ¢ is of Galois type and y a quasi-character.

Choose a finite Galois extension E of F big enough so that p factors through
We,r = Wp/Ws. Since p is primitive and irreducible, p(JW3°) must be in the center
of GL(V), because W is an abelian normal subgroup of Wg,r. In other words,
the composed map Wy 2, GL(V) — PGL(¥) kills W and therefore gives a pro-
jective representation of Gal(E/F). This projective representation of Gal(E/F)can
be lifted to a linear representation ¢y: Gy — GL(V) (see [S3, Corollary of Theorem
4]). Let o = gy - ¢. The two compositions

14

- GL(V)

Wr PGL(V)
are equal; hence p = ¢ ® y for some quasi-character y.

(2.2.4) Note that, in all cases, global and local, the primitive irreducible represen-
tations of W are twists of Galois representations by quasi-characters.
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(2.2.5) In the local nonarchimedean case one can say much more about the
structure of primitive irreducible representations (see [K]). A first result of this sort
is

(2.2.5.1) PrOPOSITION. Let F be local nonarchimedean and let V be a primitive
irreducible representation of Wy. Then the restriction of V to the wild ramification
group P is irreducible.

This result is proved in [K] and [B]. The proof depends on the supersolvability
of G4/ P.

(2.2.5.2) COROLLARY. The dimension of V is a power of the residue characteristic D.
Indeed, P is a pro-p-group.

(2.2.5.3) CoroLLARY. If U is an irreducible (not necessarily primitive) representa-
tion of Wy, of degree prime to p, then U is monomial,

Because U is induced from a primitive irreducible ¥ whose dimension is prime to
p and a p-power, hence 1.

(2.3) Inductive functions of representations. Let F be a local or global field. For a
representation ¥ of Wy, let [V]e R(Wy) denote the virtual representation de-
termined by V. Let RY(Wp) denote the group of virtual representations of degree
0 of W, i.e., those of the form [V]—[V'], with dim ¥ = dim V".

(2.3.1) ProposiTiON. The group R(Wy) is generated by the elements of the form
Indg, f{y] for E/F finite and y a quasi-character of Wy. Similarly, R{(Wp)is generated
by the elements of the form Indg, o([x] — [x']).

It suffices to prove the second statement, because R(Wy) = R(Wy) + Z - [1].
Let RW(Wy) denote the subgroup of ROY(W;) generated by the elements
Indg, (([y] — [3'D). By the degree O variant of Brauer’s theorem [D3, Proposition
1.5] we have RY(Gy) = RY(W5y). The formula Ind(p ® Res y) = (Ind p) ® y shows
that R} - y = R} for each quasi-character y of Wp.

To prove the proposition we must show for each irreducible representation p of W
that[p] - (dim p) [1]e RL(W}). For each p there is a finite extension E of Fand a prim-
itive irreducible representation gz of Wy such that p = Indy, r pg. Then [p] — (dim p)-
[1] is the sum of Indg, r([og]— (dim pg)[1z]) and (dim pg) (Indg, {15} —[E:F] [15]).
The latter is of Galois type, so by the transitivity of induction we are reduced
to the case in which p is primitive and irreducible. But then p = ¢ ® y with
o € R(Gp) and y a quasi-character (2.2.4). If n = dimp = dimg¢

lo] = nl1] = (o] — A1) [x] + n(x] — [1D)

and this is in RY.(Wy) by the remarks above, since [¢] —# [1] € RY(Gp).

(2.3.2) DerINITION. Let F be a local or global field. Let A be a function which
assigns to each finite separable extension E/F and each Ve M(Wj) an element
A(V)in an abelian group X. We say A is additive over F is for each E and each
exact sequence 0 —» V' — V — V" — 0 of representations of W we have (V) =
AV)HAV"). When that is so we can define A on virtual representations so that 2:
R(E) — X is a homomorphism for each E. We say A is inductive over F if it is
additive over Fand the diagram
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R(Wg)

is commutative for finite separable extensions E/E'[F. We say A is inductive in degree
0 over Fif the same is true with R replaced by RC.

(2.3.3) REMARK. By (2.3.1) a A which is inductive over F, or even only inductive
in degree 0, is uniquely determined by its value on quasi-characters y of Wy (i.e.,
of Cp), for all finite separable E/F. In [D3, §1.9] there is a discussion, for finite
groups, of the relations a function of characters of subgroups must satisfy in order
that it extend to an inductive function of representations.

(2.3.4) ExampLE. Leta € Cr. Put

A(V) = (det V)(rg(@)) for Ve M(Wg).

Then 2 is inductive in degree 0 over F. This follows from property (W3) of Weil
groups and the rule.

det(Ind V) = (det V) - transfer, for ¥ virtual of degree 0

(cf. [D3, §1D.

(2.3.5) ExaMpLE. Suppose v is a place of a global field F, and A is an inductive
function over F,. If we put for each finite separable E/F and each V' e M(Wg)

A=l AVw)
w place of E; wly

we obtain an inductive function 1, over F. If A is only inductive in degree 0, then
A, is inductive in degree 0.

Indeed, by a standard formula for the result of inducing from a subgroup and
restricting to a different subgroup we have

(Indg,r V), = 6‘? Indg r, Vs

because if w, is one place of E over v, then the map o + ogw puts the set of double
cosets Wi\ Wi/ Wr, in bijection with the set of all such places, and for each ¢ we can
identify Wk, with (¢ Wr,071) N W

3. L-series, functional equations, local constants. The L-functions considered in
this section are those associated by Weil [W1] to representations of Weil groups.
They include as special cases the “abelian” L-series of Hecke, made with “Grds-
sencharakteren” (= quasi-character of Cy), and the “‘nonabelian” L-functions of
Artin, made with representations of Galois groups. Our discussion follows quite
closely that of [D3, §§3, 4, 5] which we are just copying in many places.

(3.1) Local abelian L-functions. Let F be a local field.

For a quasi-character y of F* one defines L(y) € C* U {c0} as follows.

(3.1.1) F = R. For x theembedding of FinCand N = Qor 1,
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defn
Lx Vo) = [R(s) = a75/2 ['(s/2).
(3.2.1) F =~ C.For zanembeddingof FinCand N = 0,

defn
L(z7Nw) = T(s) = 2Q2n)—I(s).
(3.1.3) Fnonarchimedean. For z a uniformizer in F,

L() = {(1 — (@), if y is unramified,
1, if y is ramified.
In every case, L is a meromorphic function of y, i.e., L{yw,) is meromorphic in s,
and L has no zeros.

(3.2) Local abelian e-functions. We will denote by dx a Haar measure on F,
by d*x a Haar measure on F* (e.g., d*x = ||x||~! dx) and by ¢ a nontrivial additive
character of F.

Given ¢ and dx, one has a “Fourier transform”

7o) = [ 709 9 () ax.
The local functional equation

f —~ d* d*
G2.1) VOIS _ oy, g, an LD I

defines a number (y, ¢, dx)e C* which is independent of £, for f°s such that the two
sides make sense. If f is continuous such that f(x) and f(x) are O(e™'*") as |jx|| —
o0, then the two sides make sense naively for y such that y(x) = ||x|l° with 0 <
¢ < 1, and each side is a meromorphic function of y. One takes the same multi-
plicative Haar measure d*x on each side. The dependence of ¢ on ¢ and dx comes
from the dependence of the Fourier transform f(x) on ¢) and dx. One finds

(3.2.2) e(y, ¢, rdx) = re(y, ¢, dx), forr > 0,
(3.2.3) (x> Plax), dx) = y(a@)| a| ! ey, ¢, dx) for ae F*.

Easy computations carried out in [T1] and [W2] show that the function ¢ is given
by (3.2.2), (3.2.3) and the following explicit formulas:

(3.2.4) F ~ R. Let x be the embedding of FinCand N = Oor 1. For ¢ =
exp(2zix) and dx the usual measure, e(x N, ¢, dx) = iV

(3.25) F = C. Let z be an embedding of F in C and N z 0. For ¢ =
exp(2zi Trepz) and dx = idz A dz (= 2da db for z = a + bi), e(z Nw,, ¢, dx)
= [N,

(3.2.6) F nonarchimedean. Let 0 be the ring of integers in F. Put

n(¢) = the largest integer » such that ((z @) = 1,

a(y) = the (exponent of the) conductor of y (= 0 if y is unramified, the smallest
integer m such that y is trivial on units = 1 (mod z™) if 7 is ramified),

¢ = an element of F* of valuation n(¢) + a(y). If y is unramified,

(3.2.6.1) e, & dx) = KO f Jax.

el

(In particular, e(y, ¢, dx) = 1, if [, dx = 1, and n(¢)) = 0 when y is unramified.)
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For y ramified,

defn
&y, ¢, dx) = . yIxX) () dx = 3] ‘x”l(x) ¢ (x) dx
(3262) jF nez-“ﬂ"@

= jc_w' (%) ¢ (x) dx.
From these formulas one deduces, for y arbitrary and @ unramified
(3.2.6.3) e(yw, ¢, dx,) = &(y, ¢, dx) (@ P +e D).

(3.3) Local nonabelian L-functions. We owe to Artin the discovery that there is
an inductive (2.3.2) function L of representations of Weil groups of local fields
such that L(V)= L(y) when ¥ is a representation of degree 1 corresponding to the
quasi-character y. The explicit description of L is as follows:

(3.3.1) F archimedean. Since L is additive, we can define it by giving its value on
irreducible V. For Fcomplex, Wy = F* is abelian, and the only irreducible ¥’s are
the quasi-characters y, for which L has already been defined. For Freal, the only
irreducible ¥’s which are not of dimension 1 are those of the form V = Indg7 %,
where y is a quasi-character of F* = W5 which is not invariant under “complex
conjugation”. For such ¥ we put L(¥V) = L(y), as we are forced to do in order that
L be inductive.

(3.3.2) F nonarchimedean. Let I be the inertia subgroup of Wp. Let @ be an
“inverse Frobenius™, i.e., an element of W such that {|@| = ||z || This condition
determines @ uniquely mod 7 and we put L(V) = det(1 — &|¥F7)~1, where V7 is the
subspace of elements in V fixed by L.

A proof that the “nonabelian” function L defined as above is inductive can be
found in [D3, Proposition 3.8] (as well as in [A]). In the archimedean case one uses
the relation F{s) = Ig(s)I(s + 1). Technically, in order that Z have values in a
group, we should view L as a function which associates with ¥ the meromorphic
function s — L(V w,), and take the X in Definition (2.3.2) to be the multiplicative
group of nonzero meromorphic functions of s.

(3.4) The local “nonabelian” e-function, e(V, ¢, dx). For this there is at present
only an existence theorem (see below), no explicit formula.l This lack is not sur-
prising if we recall that the formulas defining ¢ in (3.2) make essential use of the
interpretation of y as a quasi-character of F*; if we think of y as a quasi-character
of W we have no way to define e(y, ¢, dx) without using the reciprocity law iso-
morphism F* ~ W. In fact it was his idea about “nonabelian reciprocity laws”
relating representations of degree n of W to irreducible representations = of
GL(n, F), and the possibility of defining e(z, ¢, dx) for the latter, which led Lang-
lands to conjecture and prove a version of the following big

(3.4.1) THEOREM. There is a unique function ¢ which associates with each choice of
a local field F, a nontrivial additive character ¢ of F, an additive Haar measure dx
on F and a representation V of W a number e(V, ¢, dx) € C* such that &(V, ¢, dx) =
ey, ¢, dx) if V is a representation of degree 1 corresponding to a quasi-character y,
and such that if F is a local field and we choose for each finite separable extension E

1Except for Deligne’s expression in terms of Stiefel-Whitney classes for orthogonal representa-
tions [D5, Proposition 5.2].
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of F an additive Haar measure uy on E, then the function which associates with each
such E and each V € M(Wg) the number e(V, ¢ + Trg,p, ug) is inductive in degree 0
over F in the sense of (2.3.2).

The unicity of such an ¢ is clear, by (2.3.1); the problem is existence. The experi-
ence of Dwork and Langlands indicates that the local proof of existence, based on
showing that the e(y, ¢, dx) satisfy the necessary relations, is too involved to publish
completely. Deligne found a relatively short proof (see [D3, §4]; possibly also
[T2]). It has two main ingredients, one global, one local: (1) the existence of a
global &(V) coming from the global functional equation for L(¥) (cf. (3.5) below),
and (2) the fact that if F is local nonarchimedean and « a wildly ramified quasi-
character of F*, there is an element y= y(«, ¢)) in F* such that for all quasi-charac-
ters y of F* with a(y) < ta(a), we have e(ya, ¢, dx) = y " 1(»)e(a, ¢, dx), a rather
harmless function of y.

Granting the existence of ¢(V, ¢, dx) the following properties of it are easy con-
sequences of the corresponding properties of e(y, ¢, dx), via inductivity in degree
0 and (2.3.1).

(3.4.2) ¢ is additive in ¥, so makes sense for ¥ virtual.

(3.4.3) e(V, ¢, rdx) = rémV ¢(¥V, ¢, dx), for r > 0. In particular, for ¥ virtual of
degree 0, e(V, ¢, dx) = &(V, ¢) is independent of dx.

(3.4.4) e(V, ¢a, dx) = (det V)(a) lla|4imV &(V, ¢, dx), for ae F* (cf. (2.3.4)).

(3.4.5) e(Vw,, ¢, dx) = e(V, ¢, dx) (V)™ 6(¢p)~*4mV, where:

0(¢) = q#¥ in the nonarchimedean case and is characterized in the archimedean
case by the fact that d(¢pa) = [lal|~! d(¢), and 6(¢p) = 1 for ¢ asin (3.2.4) and (3.2.5).

f(¥V) = 1in the archimedean case, and = q&V, the absolute norm of the Artin
conductor of ¥ in the nonarchimedean case. This f can be characterized as the uni-
que function inductive in degree 0 such that f(y) = g#® for quasi-characters y. For
the well-known explicit formula for a(¥) in terms of higher ramification groups,
see [S1] or [D3, (4.5)].

(3.4.6) Suppose F nonarchimedean, W unramified. Then

V@ W, ¢,dx) = e(V, ¢, dx)limW . det W(geW)+dimVn@)),

(3.4.7) Let V* denote the dual of ¥ and dx’ the Haar measure dual to dx relative
to ¢. Then

e(V, ¢, dx)e (V*wy, $(—x), dx’) = 1.
In particular
le(V, ¢, d0)|2 = V) (3()dx/dx)yimV, if V* = 7,

i.e., if V is unitary.

(3.4.8) If E/F is a finite separable extension, V' a virtual representation of degree
0 of Wy and V the induced representation of W, then e(Vi, ¢) = e(Vg, ¢ o Tr).

(3.5) Global L-functions, functional equations. Let F be a global field, ¢» a non-
trivial additive character of 4z/F, and dx the Haar measure on A such that
[} awrFdx = 1 (Tamagawa measure). Call ¢, the local component of ¢ at a place v,
and let dx =[], dx, be any factorization of dx into a product of local measures such
that the ring of integers in F, gets measure 1 for almost all v.
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Let ¥V be a representation of “‘the” global Weil group Wp, and put
(3.5.1) L, s) = 1 L(V, w)),

3.5.2) eV, s) = [l e(V, w5 ¢p dx,).

(3.5.3) TueoreM. The product (3.5.1) converges for s in some right half-plane and
defines a function L(V, s) which is meromorphic in the whole s-plane and satisfies the
Jfunctional equation

(3.5.4) LV, 5) = e(V, )L(V*, 1 — )
where V* is the dual of V.

For V a quasi-character y this result was proved by Hecke. In the modern version
of his proof ([T1], [W2]) one shows by Poisson summation that for suitable func-
tions fon 4

§ T@or, g e = [ o, 1) de,

the integrals being defined for all s by analytic continuation. Takingf = I1f, and
using the local functional equation (3.2.1) (with y replaced by yw;) one finds that
(3.5.4) holds in the “abelian” case, V' = y.

At this point, even without having a theory of the local nonabelian
&V, ¢, dx,)’s, one gets, via (2.3.1), (2.3.5), and the inductivity of the local L’s,
that L(V, 5) is meromorphic in the whole plane for each ¥, being defined by the
product (3.5.1) in a right half-plane, and that L(V, s) is inductive as a function of V.
It follows that

' defn L V’ s
§(V.s) = ‘L('Vi, =

is inductive in ¥ and satisfies &'(y, 5) = 1, e(0s ¢, dx,) for quasi-characters y
of A*/F*. It is this fact about the local &(,, ¢, dx,)'s—that their product over all
v for a global y has an inductive extension to all global V'—that Deligne uses in
his “global” proof of the existence of local nonabelian ¢’s. Once their existence is
proved, we have &'(¥, 5) = &(¥, 5) by the unicity of inductive functions since ¢(V, 5),
defined by the product (3.5.2), is inductive in degree 0 by (2.3.5).

(3.5.5) Hecke’s global function L(y, s) is entire if y is not of the form w,. Artin
conjectured (in the Galois case) that L(V, s) is entire for any ¥ which has no con-
stituent of the form w,. Weil proved Artin’s conjecture for function fields. Recently
Langlands, using ideas of Saito and Shintani, made a first breakthrough in the
number field case, treating certain ¥’s of dimension 2 by base change, using the trace
formula. (See The solution of a base change problem for GL(2) (following Langlands,
Saito, Shintani), these PROCEEDINGS, part 2, pp. 115-133.) These methods work for
all ¥’s of dimension 2 for which the image of Wy in PGL(V) is the tetrahedral group.
They also work for some octahedral cases, but a new idea will be needed to apply
them in the nonsolvable icosahedral case. However, J. Buhler [B], with the aid
of the Harvard Science Center PDP11 and the main result of [DS], has proved the
Artin conjecture for one particular icosahedral ¥ of conductor 800, by checking
the existence of the corresponding modular form of weight 1 and level 800.
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Although the Riemann hypothesis concerning the zeros of L(y, s) has been
proved by Weil in the function field case, there seems to be no breakthrough in
sight in the number field case. The conjunction of the Artin conjecture for all ¥V
and the Riemann hypothesis for all y is equivalent to the positivity of a certain
distribution on W5 (cf. [W3)).

(3.6) Comparison of different conventions for local constants. The modern ref-
erences for the material we have been discussing are Deligne D3] and Langlands
[L], and we have here followed the conventions of [D3]. Happily, the definition of
L-functions, both local and global, in [D3] coincides with that in [L]. But Deligne’s
local constants e(¥, ¢, dx), which we will designate in this section by ¢, instead of
just ¢, differ somewhat from Langlands’ e(¥, ¢») which we will denote by ¢, here.
The relationship is

(3.6.1) er(V, ) = ep(Vwisa, ¢, dxy),

where dx, is the additive measure which is self-dual with respect to ¢. The other
way around we have

(3.6.2) ep(V, ¢, dx) = (dx/dx 4™V er(Vaw_y,2, ¢).

In the nonarchimedean case the constant dx/dx, is given explicitly by
g /2 [, dx. Also, in that case if ¥ corresponds to a quasi-character y of F* we
have

oY) (ufc) du
[ o 1) & (ufc) du| >

where ¢ is an element of F* of valuation a(y) + n(¢) as in (3.2.6).
Langlands puts

(3.6.3) er(y, ¢) = x(c)

defn
(3.6.4) els, Vs ) = ef(Vws—q,2, ¢) = ep(Vws, ¢, dxy).

Then the “constant” ¢(V, s) in the global functional equation (3.5.4) is given by
eV, s) = Il,euls, V,, ¢,) for any nontrivial character ¢ of A/F, because if dx, is
self-dual on F, with respect to ¢, for each place v, then dx = [I, dx, is self-dual
on A with respect to ¢, and is therefore the Tamagawa measure on 4.

The behavior of ¢, under twisting by an unramified quasi-character is given by

(3.6.5) sV, §) = eV, §) V)™ o(g)= dim?
as in (3.4.5), but its dependence on ¢ is according to

(3.6.6) eV, ¢a) = (det V)(@e(V, ),
instead of as in (3.4.4). If V'* is the contragredient of ¥, then
(3.6.7) eV, Pe(V*, 1) = 1.

Hence, by (3.6.6)

(3.6.8) eV, &) ef(V*, &) = (det V)(— 1)
and on the other hand,

(3.6.9) le(V, ¢)| = 1, if ¥ is unitary.

The ¢;-system has the advantage that it avoids carrying along the measure dx,
but it has the following disadvantage: in the nonarchimedean case, if ¢ is a dis-
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continuous automorphism of C, then V7 is again a representation of Wy, and ¢°
an additive character, but (¥, ¢°) is not in general equal to ¢, (¥, ¢)° (nor is
(0, V7, ¢7) = £,(0, ¥, ¢)°). The trouble is that the absolute value (in (3.6.3)) may
not be preserved by g, and/or that the self-dual measure dx, in (3.6.1) may involve
+/p, and hence may not be preserved by ¢. If one does wish to eliminate the measure
dx, it is probably preferable to define, say,

(3.6.10) eV, &) = ep(V, ¢, dxy),

where dx; is the measure for which ¢ gets measure 1 in the nonarchimedean case,
and is the measure described in (3.2.4) and (3.2.5) in the archimedean case. This
convention has the minor disadvantage that the (V) in the global functional equa-
tion is not equal to the product of the local &;(¥,, ¢,)’s, but is, rather, a1 times that
product, where a is the square root of the discriminant for a number field, and is
g#~1 for a function field of genus g with ¢ elements in its constant field. But the
e(V, ¢) has the advantage that in the nonarchimedean case we do have g(V?,¢) =
&i(V, ¢) for all automorphisms ¢ of C. This is clear, by unicity (2.3.3) and the
formula

(3.6.11) alp ¢) = yO® N x(u)<i>
weo® mod 76C1) c

which follows from (3.2.6.1) and (3.2.6.2) where the notation is explained. Thus
in the nonarchimedean case we can define, for ¥ and ¢ over any field E of charac-
teristic O (an open subgroup of / acting trivially on ¥, and ¢ trivial on some z"0),
an (¥, ¢) € E*, in a unique way such that &;(Ve, ¢) = &i(¥, ¢)~ for any homo-
morphism o: E — E’ and such that ¢ is the old ¢, given by (3.6.10), when F =
C.So defined, &;(Vz, ¢+ Trg, p) is inductive in degree 0 (2.3.2) for every field of scalars
E of characteristic 0, and &,(¥, ¢) will be given by (3.6.11) if V" corresponds to a
quasi-character y: F* — E*.

In writing these notes I was tempted to shorten things a bit by using only e(V, ¢)
instead of ep(V, ¢, dx), but decided against it because (1) the ep-system avoids all
choices and is the most general and flexible—any other system, like ¢, or &; can be
immediately described as a special case of ¢p;(2) the dependence of ¢ on dx shows
“why” ¢ is inductive only in degree 0, and (3) in case our local field F is nonarchi-
medean, the ep-system, like the ¢;, works over any field E of characteristic 0, as
soon as one defines the notion of Haar measure on F with values in E (cf. [D3,

(6.1)).

4. The Weil-Deligne group, i-adic representations, L-functions of motives. The
representations considered in §3 are just the beginning of the story. Those of Galois
type are effective motives of degree O—which Deligne calls Artin motives in his
article [D6, §6] in these ProceEDINGS—with coefficients in C. We cannot discuss
the notion of motive here (cf., e.g., [D1] and [D#6] for this) but we do want to discuss
the way in which L-functions and e-functions are attached to motives of any degree.
Only very special motives of degree # 0 correspond to the representations of Wpr
considered in §3, namely, those of type A, i.e., those which, after a finite extension
E/F, correspond to direct sums of Hecke characters of type 4, over E. (A candidate
for a “motivic Galois group” for these is constructed by Langlands in these
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ProceepinGs [L3].) The simplest motives not of this type are those given by elliptic
curves with no complex multiplication; their L-functions are the “Hasse-Weil
zeta-functions” which are not expressible in terms of Hecke’s L-functions.

The procedure for attaching L-functions to motives in the form given it by
Deligne [D3], [D6] can be outlined schematically as follows:

Fis a global field.

v is a place of F.

E is a field of finite degree over Q.

A runs through the finite places of E whose residue characteristic is prime to

char(F).
o is an embedding of E in C.
Motive M over F System (H(M)) of A-adic
with cx. multn. by E : representations of G
d. fld. l-adic .
gxtension u cghcl). M, restriction
Motive M, over F, System (H(M,)) of A-adic
with cx. multn. by £ : representations of Gy,
Hodge th : nonarchimedean;
Cf‘%.gf) cory U v archimedean “ zf. ( 4_2§

Hodge structure Hdg(M,)

over F, with cx. multn. by
Equiv. class ¥(M,, ,) of

(cf. (4.4) U repns. of the Weil-Deligne

group Wy over C, invariant
under Aut(C/E)

Equiv. class V(M,,,) of repns.

over C of the Weil group Wy, u cof. 4.1)

of. 3.3), (3.4) ﬂ
L- (i.e. [*) and ¢-factors L- and e-factors at the
at the archimedean place v nonarchimedean place v

In the next sections we discuss some of the steps and concepts indicated in the
above chart. We begin with the Weil-Deligne group. This is a group scheme over
Q, but what counts, its points in and representations over fields of characteristic
0, can be described naively with no reference to schemes.

(4.1) The Weil-Deligne group and its representations. Let F be a nonarchimedean
local field and let F, Gr = Gal(F/F), W (Weil group), and 7 (inertia group) have
their usual meaning. For w e W, let [ w| denote the power of ¢ to which w raises
elements of the residue field, as in (1.4.6). Thus we have [|w| = 1 for we I, and
1@ = ¢! for a geometric Frobenius element @. We view W as a group scheme
over @ as follows: for each open normal subgroup J of I, we view Wy/J as a
“discrete’” scheme, and we put W, = proj lim (Wy/J), the limit taken over all J.
In other words, we have

Wg =[] "1 = [] spec 4,,

neZ neZ
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where A4, is the ring of locally constant @¢-valued functions on @~1,

(4.1.1) DermvTION [D3, (8.3.6)]. The Weil-Deligne group Wy is the group scheme
over @ which is the semidirect product of Wy by &, on which Wy acts by the rule
wxwl =|w|x.

Let E be a field of characteristic 0. The group Wi{E) of points of W; with
coordinates in Eis just £ x W with the law of composition (a;, w;)(az, wy) =
(a, + [wyll ag, wiwy) for a, a; € E and wy, wy € Wi

Let V be a finite-dimensional vector space over E. A homomorphism of group
schemes over £

o't W xg E— GL(V)

determines, and is determined by, a pair (p, N) as in (4.1.2) below, such that, on
points, p'((a, w)) = exp(aN) - p(w). That is the explanation for the following defini-
tion:

(4.1.2) DerINITION [D3, (8.4.1)]. Let E be a field of characteristic 0. A representa-
tion of W over E is a pair p' = (p, N) consisting of:

(a) A finite-dimensional vector space V over E and a homomorphism p: W —
GL(V) whose kernel contains an open subgroup of 7, i.e., which is continuous for
the discrete topology in GL(V).

(b) A nilpotent endomorphism N of V, such that p(w)Np(w)™! = ||w||N, for
we W.

(4.1.3) @-semisimplicity. Let o' = (p, N) be a representation of Wy over E. Define
v:We— Z by |w]| = ¢g—»®. There is a unique unipotent automorphismu of V'
such that ¥ commutes with N and with p(Wy) and such that exp(aN)p(w)ur@) is
a semisimple automorphism of ¥ for all a € E and all w e Wy—I [D3, (8.5)]. Then
pss = (pu~?, N) is called the @-semisimplification of p’, and p’ is called @-semisimple
if and only if p’ == p_, i.e., u = 1, i.e., the Frobeniuses act semisimply. For this it
is necessary and sufficient that the representation p of Wy be semisimple in the ordi-
nary sense, because (@) generates a subgroup of finite index in p(Wp), and in
characteristic 0 a representation of a group is semisimple if and only if its restriction
to a subgroup of finite index is semisimple. In his article in these PROCEEDINGS,
Borel discusses admissible morphisms Wz — LG; when G = GL,, these are just our
@-semisimple (o, N)’s. :

(4.1.4) ExaMpLE. Sp(n) is the following representation (o, N) of Wy over Q.

V=20"= Qe + Qe + - + Qe,,,
P(W)ei = Cl),-(W)e,- (= ”wl]"e,-),
Ne,- = €;1) (0 é i<n-— 1), Ne,,_l = Q.

(4.1.5) Given any (p, N), Ker N is stable under Wr. Hence (p, V) is irreducible <
N = 0 and pis irreducible. It is not hard to show that the @-semisimple indecom-
posable representations of W are those of the form ¢" ® Sp(n) with p’ irreducible.
(The ® is defined by (0, N) ® (01, N) = (@0 ® o, N® 1 + 1 ® Ny).)

(4.1.6) Let (p, N, V) be a representation of Wy over E. We put Vi = (Ker N)/
and define a local L-factor, a conductor, and a local constant by
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Z(V, 1) =det(1 — @t|V{)yl, and L(V,s) = Z(V, ¢=), when E < C;
a(V) = a(p) + dim V! — dim V},
e(V) = elp)det (— @ | VI[V}),
and
eV, 1) = e(V)rs,

Here, for ¢, the usual ¢ and dx are understood, but omitted from the notation.

These quantities do not change if we replace V by its @-semisimplification; but
note that they are not additive as functions of ¥, because Vy is not. If N = 0, they
are the same as before.

One of the main reasons for introducing the Weil-Deligne group is the fantastic
generalization of local class field theory embodied in:

(4.1.7) Conjecture. Let F be a nonarchimedean local field and » an integer > 1.
There is a (in fact more than one) natural bijection between isomorphism classes of
O-semisimple representations of Wi of degree n, and of irreducible admissible re-
presentations of GL(#n, F).

For n = 1 this is local class field theory. For n = 2, it is discussed at length in
[D2, (3.2)]. In this conjecture, for any n, the irreducible representations of Wi
(which are just irreducible representations of W) should correspond to the cuspidal
representations of GL(», F). I understand that Bernstein and Zelevinsky have
shown that the way in which arbitrary admissible representations of GL(n, F) are
built out of cuspidal ones follows the same pattern as the way in which arbitrary
P-semisimple representations of Wy are built up out of irreducible ones. Thus the
main problem is now the correspondence between irreducibles and cuspidals.

A more general conjecture, involving an arbitrary reductive group G rather than
Just GL(n), relates admissible representations of G(F) to homomorphisms of W
into the “Langlands dual” of G (see Borel’s article in these PROCEEDINGS). This
more general conjecture is the nonarchimedean local case of “Langlands’ philo-
sophy”.

(4.2) A-adic representations. Now suppose / is a prime different from the residue
characteristic p of F and let #;: I, - @, be a nonzero homomorphism. (Such a z,
exists and is unique up to a constant multiple, because the wild ramification group
P is a pro-p-group, and the quotient I/P is isomorphic to the product [] 1=p21) We
have

twow™1) = |w| o), foreel,we W,

because conjugation by w induces raising to the [|w| power in I/P. Let @ be an in-
verse Frobenius element (4.1.8). Suppose £, is a finite extension of @, A }-adic
representation of Wi is a finite-dimensional vector space V; over E; and a homo-
morphism of topological groups p;: Wr — GLg/(V;) where GLg (V) has the A-adic
topology (i.e., the topology given by the valuation).

(4.2.1) TaeoreM (DELIGNE [D3, §8)). The relationship V; = V and
p(@7a) = p(@ro)exp{t o) N), cel,ne Z,
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sets up a bijection between the set of A-adic representations (0;, V) of W and the set
of representations (o, N, V') of W over Ej. The corresponding bijection between iso-
morphism classes of each is independent of the choice of t, and ®.

To show that every p; is of this form one uses

(4.2.2) CorROLLARY (GROTHENDIECK). Let (03, V) be a A-adic representation of Wr.
There exists a nilpotent endomorphism N of V; such that px(o) = exp(t(c)N) for o
in an open subgroup of L.

A proof of the corollary can be found in the appendix of [ST]. Here is a sketch.
Since I is compact, p,(/) stabilizes a “lattice” L in V;. Replacing F by a finite exten-
sion we can assume that p(/) fixes L (mod /2). Then p,(I) is a pro--group, so is a
homomorphic image of #(1), since Ker ¢, is prime to /. Choose ¢ € @, such that
et (I) = Z,. Then there is an @ € GL(V) fixing L (mod /?) such that

PA(U) = @) = exp(tl(O')N)

for all g € I, where N = ¢ log a. Conjugating by px(®) we find p}(DINo @)} =
g~LN. Thus the set of eigenvalues of N is stable under multiplication by g!. Since ¢
is not a root of unity in characteristic 0, it follows that the only eigenvalue of N is
zero, i.e., NV is nilpotent.

(4.2.3) COROLLARY. If V; is a semisimple A-adic representation of Wy then some
open subgroup of 1 acts trivially on V;, so V can be viewed as an *‘ordinary’’ represen-
tation of Wr.

For any V; the kernel of N is stable under Wy because p(w)N,(w)™! = IwilN.
So if ¥, is irreducible, then N=0, and the statement follows from (4.2.2). A semi-
simple ¥ is a direct sum of irreducible subrepresentations.

(4.2.4) In view of (4.2.3), &(V;) and a (V;) have meaning if ¥, is semisimple. For
arbitrary V3, if (0, ¥3) and (p, N, V) correspond as in (4.2.1), we define the L- and
e-factors associated to ¥; to be those associated to V. These can be expressed di-
rectly in terms of ¥; as follows:

Z(V, 1) = det(l — O| V] = Z(V}, 1),
a(V) = a(V$) + dim(F§) — dim V; = a(Vy),

— Ol
o) = ey QD)

det(— O] VD)
and
E(V, t) = S(Vz)fa(v‘l) = E(Vh f),

where ¥ is the semisimplification of ¥, in the ordinary sense. One can define a
“p-semisimplification” of ¥, analogous to that of V' (4.1.3). The quantities on the
right do not change if we replace ¥, by its ¢-semisimplification, but they are not
additive in V3, because V4 is not.

(4.2.4) Motives. Suppose now E is a finite extension of 0. Let M be a motive with
complex multiplication by E, defined over our nonarchimedean local field F ([D1],
[D6]). Let n be the rank of M. Attached to M will be l-adic representations H,(M),
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vector spaces of dimension n over @; on which G acts continuously, one for each
I # char(F). The field E will act on these, and for each / we get a decomposition
H{M) = @;, HyM), where for each place 1 of E above /, we put Hy(M) =
E; @ poe, HAM), a vector space of dimension m over E, where m is the rank of M
over E, given by n = m[E: @].

For each/ # p and each A above / let H;(M) be the representation of Wy, over E;
corresponding to H;(M) by (4.2.1). If our motive M lives up to expectations, the
system of A-adic representations H;(M) will be compatible over E in the sense that
the system H3(M) is compatible over E in the following naive sense: for any two
finite places 4, y of E not over p and every commutative diagram

E/EZ\C
.,

the m-dimensional representations of Wy over C, H(M) ®g, C and H (M) ®g,C,
are isomorphic (or at the very least, have isomorphic @-semisimplifications).
If so0, then the isomorphism class of (the @-semisimplifications of) these representa-
tions depends only on the embedding £ = C'in the diagram above.

We denote this isomorphism class by V(M ), where ¢ denotes the embedding of
EinCand M, = M ® , C is the motive of rank m with coefficients in C deduced
from the original M, the action of E on it, and the embedding.c of E in C, cf. [D6,
2.1]. Associated to V(M ,) as explained in (4.1.6) are the local quantities ¢, L, and
¢ which we shall denote by L(M,, ), etc.

(4.3) Reduction. Let r be an integer = 0 and X a projective nonsingular variety
over F. In this paragraph we shall restrict our attention to the special motive M =
Hr(X)given by the r-dimensional cohomology of X, and we shall ignore any com-
plex multiplication. For the moment F can be any field. Put X = X x  F, the
scheme obtained by extending scalars from F to F. For each prime / # char(F)the
l-adic étale cohomology group H7(X,,, @)) is defined, and gives an l-adic representa-
tion of G = Gal(F/F) (by functoriality, G acting on X through F). In the nota-
tion of the previous paragraph we have now F = Q, 1 = [, H(M) = H"(X,, @).
I do not know to what extent the compatibility of the H,(M)’s is known (assuming
now again that F is local nonarchimedean), but the compatibility at least of their
@-semisimplifications is known in one very important case—that of

(4.3.1) Good reduction. Let 0 be the ring of integers in F, and k = @/n0 the re-
sidue field. The scheme X is said to have good reduction if there exists a scheme
X projective and smooth over ¢ such that X = X x, F. Choosing such an X, one
calls X x , k the reduction of X. Let us denote this reduction by X,. Putting X, =
X, x  k, where k is the residue field of 7, the base-change theorem gives a canonical
isomorphism

(*) H(M) = H'(X, 0) ~ H'(X,, @)

compatible with the action of the Galois groups. Hence H, (M) is unramified, i.e.,
fixed by 7, and the structure of H,(M) as representation of W is given by the action
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of @. Let p: Xy — X, be the Frobenius morphism, and o: k — k the Frobenius au-
tomorphism. The composition ¢ X ¢ acts on X, = X; x k by fixing points and by
mapping f— f9 in the structure sheaf. This map induces (a morphism canonically
isomorphic to) the identity on the site (Xg)e:» SO the action of the Frobenius mor-
phism ¢ on H7(X, @) is the same as that of ¢~1, which is the one corresponding to
our @ under the isomorphism (). That is why Deligne calls ¢ the geometric Fro-
benius.

Deligne [D4] has proved Weil’s conjecture, that the characteristic polynomial of
¢ acting on H7(X,, @)) has coefficients in Z, is independent of /, and that its com-
plex roots have absolute value ¢7/2.-From the independence of / it follows in this
case of good reduction that the @-semisimplifications of the H{M)’s form a com-
patible system; and the H,(M)’s are known to be O-semisimple forr = 1.

It is natural to say that a motive M over F has good reduction, or is unramified if
and only if H(M) = H(M), ie., if V(M) = V(M){. In case M = Hy(4), Aan
abelian variety, this is equivalent to 4 having good reduction (criterion of Neron-
Ogg-Shafaryevitch in [ST)).

Similarly we say M has potential good reduction<> N = 0, and M has semi-
stable reduction if V(M) = V(M)!. Clearly this latter can always be achieved by a
finite extension of the ground field.

(4.4) F archimedean. Let now M, E, n, m be as in (4.2.4), but take F to be archi-
medean, instead of nonarchimedean. Let z: F — C be the embedding of Fin C
if Fis real, or one of the two isomorphisms of Fon C if Fis complex. Such a z gives
us a motive M, over C and M, has a “Betti realization” Hg(M,) which is an n-
dimensional vector space over @ whose complexification Hp(M,) ® C = D H(M,)
is doubly graded in such a way that the map 1 ® ¢ (¢ = complex conjugation)
takes H? to He». (For example, if M = H’(X) as in (4.3), then Hp(M,) =
~Hr(X2, @), where X2 is the complex analytic variety underlying the scheme
X x g, C, and the complexification of this space, H"(X?", (), is doubly graded by
Hodge theory.)

Let z = coz: F - C be the map conjugate to z. By transport of structure, there is
an isomorphism 7: Hz(M,) — Hp(M;) such that  ® c preserves the bigrading on
the complexifications; hence ¢ ® 1 carries H#4(M,) onto He#(M;). The field E of
complex multiplications acts on H(M,) preserving the bigradation on the com-
plexification, and 7 is an E-homomorphism. Let o: E - C. Putting V,(M,) =
Hy(M,) ®g,,C we obtain a bigraded complex vector space of dimension m and
a linear isomorphism z ® 1: V,(M,) —» V(M,) taking V¥ to V2.

There is a natural action of the Weil group W on these spaces as follows:

F complex. z: F ~ C an isomorphism, Wy = F*, and Wy acts on V' by scalar
multiplication via the character z=#(2) . Clearly, 7 ® 11is W -equivariant, so the
two representations ¥,(M,) and V;(M,) are isomorphic. We let V(M) denote their
isomorphism class.

Freal. z = z: F — C is the embedding, and Wy = C* {J jC*. This time M, =
M, so we have only one space, V,(M,) = Vy(M,), and z® 1 is an automorphism
of it. The action of Wy on it is as follows:

u e C* acts as multiplication by u~2(i1)~? on V1.

jactsasitto(r @ 1)on V.

Again, let ¥(M,) denote the equivalence class of this representation.
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Notice that the representations obtained from motives via Hodge theory are
very special, in that the p and ¢ are integers.

Finally, define L(M,, 5) and &(M,, 5) to be the L- and e-factors associated to the
representation V(M) as in §3. For a table making these explicit see [D6, 5.3].

(4.5) F global. Let F be a global field and M a motive with complex multiplication
by E, defined over F. For each place v of F, let M, denote the restriction of M to
F, Letg: E — C. The product L(M,, s) = ], L(M,,,, s) converges in a right half-
plane. It is conjectured that it is meromorphic in the whole s-plane and satisfies the
functional equation

L(M,, s) = e(M,, s) LM¥, 1 — )

with M* = Hom(M, @) and (M, 5) = [1, M, ., 5).

In the function field case this conjecture has been proved by Deligne. Let ¢ be
the number of elements in the constant field k of F. Grothendieck proved that for
any given A-adic representation V of G which is unramified at all but a finite num-
ber of places v, the corresponding L-function L(V, s) = [], L(V,, s}is a rational
function of g (even a polynomial if ¥¢ = 0 and Vz = 0, where G is the geometric
Galois group, i.e., the kernel of the map of Gpto G,), and satisfies a functional
equation of the form L(V, s) = &(V, s)L(V'*, 1 — s5) with an e which is a monomial
in g of degree Y, [k(v):k] a(V,). Later, Deligne showed that Grothendieck’s
e(V, s) is equal to the product of the local e(V,, s)’s if ¥ = ¥, is a member of a
family (V;);c of A-adic representations of G for some infinite set of places &
of a number field E, and the family is compatible in the following weak sense: for
each A, y e & there is a finite set S of places of F such that for v ¢ S, the represen-
tations V; and V¥, are unramified at v and the characteristic polynomals of @,
acting on ¥, and ¥, have coefficients in £ and are equal. Deligne’s method is to
prove that Grothendieck’s ¢ is congruent to the product of the local &’s modulo 2
for all A ¢ & and is therefore equal to that product. By (4.3) any A-adic representa-
tion coming from /-adic cohomology, i.e., from a motive, is a member of a system
which is weakly compatible in the above sense.

When dim(¥) = 2, then by Jacquet-Langlands (resp. Weil), Springer Lecture
Notes 114 (resp. 189), these results show that L(V, s) comes from an automorphic
representation of (resp. modular form on) GLy(4y). On the other hand, Drinfeld
has recently shown that automorphic representations of GL, give rise to systems
of l-adic representations occurring as constituents in tensor products of those com-
ing from 1-dimensional l-adic cohomology, hence from motives. Thus for GL,
over function fields, the equivalence between motives, compatible systems of /-
adic representations, and automorphic representations is pretty well established.

In this connection it should be mentioned that Zarhin [Z] has proved the isogeny
theorem over function fields: if two abelian varieties 4 and B over a global function
field F give isomorphic /-adic representations, then they are isogenous; more pre-
cisely,

0, ® Homy(4, B) = Hom¢ (V/(A), V(B)).

Over number fields our knowledge is not nearly so advanced. For Artin motives
of rank 2, Langlands has made a beginning with the theory of base change (see
the remarks (3.5.5)). For elliptic curves M over @, it is not even known whether
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L(M, s) has a meromorphic continuation throughout the s-plane, or whether the
isogeny theorem is true. For a more detailed account of our ignorance, as well as
of a few things which are known, see [S4].
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