Math 31BH, Winter 2017
 Honors Multivariable Calculus, HW 1

Due Wednesday January 18th 2017 at 2:15 PM in Eric's box

Section 1.5 (p. 101): 1, 2, 3, 4, 5, 6, 7

Problem A. For $x \in \mathbb{R}^{n}$ and $r>0$ let $B_{r}(x)=\left\{y \in \mathbb{R}^{n}:\|x-y\|<r\right\}$.
(a) Show that $B_{r}(x)$ is an open subset of \mathbb{R}^{n}.
(b) Prove that its closure is $\overline{B_{r}(x)}=\left\{y \in \mathbb{R}^{n}:\|x-y\| \leq r\right\}$.

Problem B. Use De Morgan's laws and the results of Exercise 1.5.3 to prove the following about closed subsets of \mathbb{R}^{n}.
(a) If $\left\{C_{i}\right\}_{i \in I}$ is any collection of closed sets, their intersection

$$
\bigcap_{i \in I} C_{i}=\left\{x \in \mathbb{R}^{n} \text { which lies in all } C_{i}\right\} .
$$

is also closed.
(b) If $\left\{C_{i}\right\}_{i \in I}$ is a finite collection of closed sets, their union

$$
\bigcup_{i \in I} C_{i}=\left\{x \in \mathbb{R}^{n} \text { which lies in some } C_{i}\right\} .
$$

is also closed.
(c) If $C_{i}=\left[0,1-\frac{1}{i}\right]$, describe the union $\bigcup_{i=1}^{\infty} C_{i}$. Is it an interval?

