MATH 31BH, WINTER 2017

Honors Multivariable Calculus, HW 2

Due Monday January 23rd 2017 at 2:15 PM in Eric's box

Section 1.5 (p. 101): 9, 13, 14, 16, 17 (part 1 only), 21, 22(a)

Problem A. For two vectors $x, y \in \mathbb{R}^n$ let $D(x, y) = \max_{i=1,\dots,n} |x_i - y_i|$.

- (a) Show that D defines a metric on \mathbb{R}^n .
- (b) Give a geometric description of the open balls defined by D, i.e.

$$B_r^D(x) = \{ y \in \mathbb{R}^n : D(x, y) < r \}.$$

Draw $B_3^D((2,1))$ in the plane.

(c) For any two $x,y\in \mathbb{R}^n$ show the inequalities

$$D(x,y) \le d(x,y) \le \sqrt{n} \cdot D(x,y),$$

where $d(x, y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$ is the usual metric on \mathbb{R}^n .

Problem B. Find the interior, closure, and boundary of the sets below.

- (a) The set of all integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ in \mathbb{R} .
- (b) The "half-open" unit square $[0,1)\times (0,1]$ in $\mathbb{R}^2.$
- (c) The subset $\{(\frac{1}{a}, \frac{1}{b}) : a, b \in \mathbb{N}\}$ of \mathbb{R}^2 .

(Hint: Draw them.)