Math 31BH, Winter 2017
 Honors Multivariable Calculus, HW 2

Due Monday January 23rd 2017 at 2:15 PM in Eric's box

Section 1.5 (p. 101): 9, 13, 14, 16, 17 (part 1 only), 21, 22(a)

Problem A. For two vectors $x, y \in \mathbb{R}^{n}$ let $D(x, y)=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|$.
(a) Show that D defines a metric on \mathbb{R}^{n}.
(b) Give a geometric description of the open balls defined by D, i.e.

$$
B_{r}^{D}(x)=\left\{y \in \mathbb{R}^{n}: D(x, y)<r\right\} .
$$

Draw $B_{3}^{D}((2,1))$ in the plane.
(c) For any two $x, y \in \mathbb{R}^{n}$ show the inequalities

$$
D(x, y) \leq d(x, y) \leq \sqrt{n} \cdot D(x, y)
$$

where $d(x, y)=\|x-y\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$ is the usual metric on \mathbb{R}^{n}.

Problem B. Find the interior, closure, and boundary of the sets below.
(a) The set of all integers $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ in \mathbb{R}.
(b) The "half-open" unit square $[0,1) \times(0,1]$ in \mathbb{R}^{2}.
(c) The subset $\left\{\left(\frac{1}{a}, \frac{1}{b}\right): a, b \in \mathbb{N}\right\}$ of \mathbb{R}^{2}.
(Hint: Draw them.)

