Math 31BH, Winter 2017
 Honors Multivariable Calculus, HW 3

Due Monday January 30th 2017 at 2:15 PM in Eric's box

Section 1.5 (p. 101): 11, 12, 18
Section 1.6 (p. 118): 1, 2, 6 (you may use A below for Exercise 1.6.2)
Problem A. Fix a point $y \in \mathbb{R}^{n}$ once and for all, and define the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be the distance from that point: $f(x)=d(x, y)=\|x-y\|$.
(a) Verify that $\left|f(x)-f\left(x^{\prime}\right)\right| \leq\left\|x-x^{\prime}\right\|$ for all $x, x^{\prime} \in \mathbb{R}^{n}$.
(b) Conclude that f is uniformly continuous.
(c) What is the preimage $f^{-1}((-\infty, r))$? Give a geometric description.

Problem B. Let $X \subset \mathbb{R}^{n}$ be an open subset, and let $f: X \rightarrow \mathbb{R}^{m}$ be an arbitrary function defined on it.
(a) Show that f is continuous if and only if the preimage

$$
f^{-1}(V)=\{x \in X: f(x) \in V\}
$$

is open for every open subset $V \subset \mathbb{R}^{m}$.
(b) Check that $f^{-1}\left(\mathbb{R}^{m}-V\right)=X-f^{-1}(V)$ for all subsets $V \subset \mathbb{R}^{m}$.
(c) Assuming X is closed (instead of open) use (b) to prove the analogue of (a) for all closed subsets $V \subset \mathbb{R}^{m}$.

Problem C. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b). Let f^{\prime} denote its derivative.
(a) Suppose $f(a)=f(b)$. Show that $f^{\prime}(c)=0$ for some $c \in(a, b)$.
(b) Use (a) to prove the more general statement (the so-called mean value theorem) that there always exists a point $c \in(a, b)$ for which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(Hint: Apply (a) to the function $F(x):=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$.)
(c) Deduce that sin, cos, and arctan, are uniformly continuous on \mathbb{R}.

