Math 31BH, Winter 2017
 Honors Multivariable Calculus, HW 4

Due Wednesday February 8th 2017 at 2:15 PM in Eric's box

Section $1.7(\mathbf{p . 1 3 4}): 1,2,5,6,7,11,14$ (generalize to g with values in \mathbb{R}^{m})

Problem A. Recall that the supremum of a non-empty bounded set $A \subset \mathbb{R}$ is defined as the least upper bound for A. It is denoted $\sup (A)$. Similarly, its infimum $\inf (A)$ is the greatest lower bound.
(a) Show that there is an increasing sequence $\left\{a_{m}\right\}_{m=1}^{\infty}$ in A converging to $\sup (A) .\left(\right.$ Here by increasing we mean that $\left.a_{1} \leq a_{2} \leq \cdots \leq a_{m} \leq \cdots\right)$
(b) Conversely, suppose $\left\{b_{m}\right\}_{m=1}^{\infty}$ is a bounded increasing sequence in \mathbb{R}. Show that it converges to $\sup (B)$, where $B:=\left\{b_{1}, b_{2}, \ldots, b_{m}, \ldots\right\}$.
(c) Let $\left\{c_{m}\right\}_{m=1}^{\infty}$ be an arbitrary bounded sequence in \mathbb{R}. Define another sequence $\left\{d_{m}\right\}_{m=1}^{\infty}$ by letting $d_{m}:=\inf \left\{c_{m}, c_{m+1}, \ldots\right\}$. Deduce from (b) that d_{m} converges as $m \rightarrow \infty$. (The limit is denoted $\lim \inf _{m \rightarrow \infty} c_{m}$ and is called the limit inferior of the original sequence $\left\{c_{m}\right\}_{m=1}^{\infty}$.)

Problem B. Define a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by the formula $f(x, y)=\frac{x y^{2}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$, and at the origin declare that $f(0,0)=0$.
(a) Show f is continuous, and that it vanishes on the axes $x=0$ and $y=0$.
(b) Explain why the two partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at every point $(x, y) \in \mathbb{R}^{2}$ and compute them explicitly. Are they continuous at $(0,0) ?$
(c) Find the directional derivative of f at $(0,0)$ in the direction $(1,1)$, if it exists, and conclude that f is not differentiable at the origin.

