Math 31BH, Winter 2017
 Honors Multivariable Calculus, HW 5

Due Monday February 13th 2017 at 2:15 PM in Eric's box

Section 1.7 (p. 134): 16(a), 18, 19
Section 1.8 (p. 143): 1
Section 1.9 (p. 151): 1, 2(a), 3

Problem A. Fix a point $y \in \mathbb{R}^{n}$ and define a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be the distance $f(x)=\|x-y\|$ (cf. Problem A on Homework 3).
(a) Explain why the partial derivatives $\frac{\partial f}{\partial x_{j}}$ do not exist at the point y.
(b) Show that all partial derivatives of f exist away from y, and that for all points $x \neq y$ the gradient of f is given by the formula

$$
\nabla f(x)=\frac{x-y}{\|x-y\|}
$$

(c) Verify that f is continuously differentiable on the complement $\mathbb{R}^{n}-\{y\}$.

Problem B. Let $U \subset \mathbb{R}^{n}$ be an open convex ${ }^{1}$ set, and $f: U \rightarrow \mathbb{R}$ a continuous function. Fix $a, b \in U$ and assume $D_{b-a} f$ exists at all points in U.
(a) Use the mean value theorem (in one variable) to prove the existence of a point $c \in U$ where

$$
D_{b-a} f(c)=f(b)-f(a) .
$$

Can you say more about the location of c ?
(b) Suppose f is differentiable on U with bounded gradient. (That is, there is a constant M such that $\|\nabla f(c)\| \leq M$ for all $c \in U$.) Show that f is uniformly continuous on U.
(c) Generalize (b) to vector-valued differentiable functions $f: U \rightarrow \mathbb{R}^{m}$ with bounded total derivative. (That is $\|D f(c)\| \leq M$ for all $c \in U$, where $\|\cdot\|$ here means the matrix norm.)

[^0]
[^0]: ${ }^{1}$ I.e., the line segment joining any two points in U is contained in U; balls are convex

