Due Wednesday February 22nd 2017 at 2:15 PM in Eric's box

Section 1.8 (p. 143): 4, 7, 8, 9, $10^{1}, 11,12$.
Problem A. We express a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ in polar coordinates as follows:

$$
\tilde{f}(r, \theta):=f(r \cos \theta, r \sin \theta)
$$

(a) Assuming f is differentiable explain why \tilde{f} is differentiable.
(b) Under the assumption in (a) verify that
(i) $r \frac{\partial \tilde{f}}{\partial r}(r, \theta)=x \frac{\partial f}{\partial x}(x, y)+y \frac{\partial f}{\partial y}(x, y)$.
(ii) $\frac{\partial \tilde{f}}{\partial \theta}(r, \theta)=-y \frac{\partial f}{\partial x}(x, y)+x \frac{\partial f}{\partial y}(x, y)$.

Here $x=x(r, \theta)=r \cos \theta$ and $y=y(r, \theta)=r \sin \theta$.

Problem B. Define a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by the formula $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$ when $(x, y) \neq(0,0)$, and declare that $f(0,0)=0$.
(a) Calculate the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at all points (x, y).
(b) Evaluate the partial derivatives on the two axes $x=0$ and $y=0$; i.e., find

$$
\frac{\partial f}{\partial x}(0, y), \quad \frac{\partial f}{\partial y}(0, y), \quad \frac{\partial f}{\partial x}(x, 0), \quad \frac{\partial f}{\partial y}(x, 0)
$$

(c) Compute the following second order partial derivatives at the origin;

$$
\frac{\partial^{2} f}{\partial x^{2}}(0,0), \quad \frac{\partial^{2} f}{\partial x \partial y}(0,0), \quad \frac{\partial^{2} f}{\partial y \partial x}(0,0), \quad \frac{\partial^{2} f}{\partial y^{2}}(0,0)
$$

(d) Conclude that f is of class \mathcal{C}^{1} but not \mathcal{C}^{2}. (cf. Def. 1.9 .7 on p. 149.)

[^0]
[^0]: ${ }^{1}$ Hint: Use Problem A part (b)(ii) on this problem set for part (b) of exercise 1.8.10.

