Math 31BH, Winter 2017
 Honors Multivariable Calculus, HW 8

Due Monday March 6th 2017 at 2:15 PM in Eric's box

Section 3.3 (p. 323): 3, 4(a), 6
Section 3.4 (p. 331): 1, 3, 6, 9

Problem A. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, and let $v \in \mathbb{R}$ be an arbitrary number lying between $f(a)$ and $f(b)$. In this problem we show that there exists a point $c \in[a, b]$ for which $f(c)=v$. (This is known as the intermediate value theorem.)
(a) First reduce to the case where $f(a)<v<f(b)$. (Hint: Consider $-f$.)
(b) Explain why $S:=\{x \in[a, b]: f(x)<v\}$ is non-empty and bounded; then show that $c:=\sup (S)$ satisfies the inequality $f(c) \leq v$.
(c) Prove that $f(c)=v$ by contradiction. (Hint: If $f(c)<v$ let $\epsilon=v-f(c)$ and get a δ such that $|f(x)-f(c)|<\epsilon$ whenever $|x-c|<\delta$. Deduce that all such $x \in[a, b] \cap(c-\delta, c+\delta)$ lie in S, and infer that $c=b$.)
(d) Conclude that the range is the interval $f([a, b])=[\min f, \max f]$.

Problem B. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two continuous functions, and assume that g is non-negative (meaning that $g(t) \geq 0$ for all $t \in[a, b]$).
(a) Using part (d) of Problem A above, show the existence of a point $c \in[a, b]$ with the property

$$
\int_{a}^{b} f(t) g(t) d t=f(c) \cdot \int_{a}^{b} g(t) d t
$$

(Hint: Multiply $\min (f) \leq f(t) \leq \max (f)$ by $g(t)$ and integrate.) Does this still hold if we instead assume g is non-positive?
(b) Taking $g(t)=1$ deduce the mean-value theorem for integrals: For some c,

$$
\frac{1}{b-a} \cdot \int_{a}^{b} f(t) d t=f(c)
$$

(c) Give an example illustrating the conclusion in (a) fails if we do not impose conditions on g. (Hint: Take $f(t)=g(t)=t$ on $[-1,+1]$.)

