Due Thursday March 16th 2017 at 10:15 AM in Eric's box

Section 2.10 (p. 275): 1, 5
Section 3.6 (p. 348): 1, 2, 5
Problem A. In the proof of the inverse function theorem ${ }^{1}$ we appealed to the following result, which we will show in this exercise:

Lemma 1. Let $f: U \rightarrow \mathbb{R}$ be a function defined on an open subset $U \subset \mathbb{R}^{n}$ containing a. Then f is differentiable at a if and only if there exists a function $\Phi: U \rightarrow \mathbb{R}^{n}$ which is continuous at a such that

$$
\begin{equation*}
f(x)-f(a)=\Phi(x) \bullet(x-a), \quad \forall x \in U \tag{1}
\end{equation*}
$$

Moreover, any such Φ necessarily satisfies the relation $\Phi(a)=\nabla f(a)$.
(a) First suppose f is differentiable at a. I.e., there is a function $\epsilon_{a}(x)$ defined in a neighborhood of a, and continuous at a, such that $\epsilon_{a}(a)=0$ and

$$
f(x)=f(a)+\nabla f(a) \bullet(x-a)+\epsilon_{a}(x) \cdot\|x-a\|
$$

holds for x in a neighborhood of a. Define $\Phi(x)$ by the formula

$$
\Phi(x):=\nabla f(a)+\epsilon_{a}(x) \cdot \frac{x-a}{\|x-a\|}
$$

for $x \neq a$, and declare that $\Phi(a)=\nabla f(a)$. Check this Φ does the job.
(b) Now suppose we have a continuous $\Phi(x)=\left(\phi_{1}(x), \ldots, \phi_{n}(x)\right)$ such that (1) holds. Verify that $\frac{\partial f}{\partial x_{j}}(a)$ exists for all j and equals $\phi_{j}(a)$. Conclude that $\Phi(a)=\nabla f(a)$.
(c) Continuing with the setup in (b) show the inequality

$$
\frac{|f(x)-f(a)-\nabla f(a) \bullet(x-a)|}{\|x-a\|} \leq\|\Phi(x)-\Phi(a)\|
$$

for all $x \in U-\{a\}$. Infer that f is differentiable at a.

[^0](d) Extend Lemma 1 to vector-valued functions $f: U \rightarrow \mathbb{R}^{m}$.

Problem B. Let $K \subset \mathbb{R}^{n}$ be a compact subset.
(a) Show that $\sup \{\|x-k\|: k \in K\}$ is finite for all $x \in \mathbb{R}^{n}$. (Hint: Use the result of Problem A, part (b), on HW3, and Theorem 1.6.9 in the book.)
(b) Let $d(x, K):=\inf \{\|x-k\|: k \in K\}$. Prove that $d(x, K)=0 \Longleftrightarrow x \in K$.
(c) Show that $\forall x, y \in \mathbb{R}^{n}$ the following inequality holds:

$$
|d(x, K)-d(y, K)| \leq\|x-y\| .
$$

Conclude that the function $x \mapsto d(x, K)$ is uniformly continuous.

Problem C. The version of the inverse function theorem proved in class is (apart from local injectivity) the following:

Theorem 1. Let $f: U \rightarrow \mathbb{R}^{n}$ be an injective function of class \mathcal{C}^{1} defined on an open subset $U \subset \mathbb{R}^{n}$. Suppose its Jacobian matrix $J f(x)$ is invertible $\forall x \in U$. (I.e., has nonzero determinant). Then the image $f(U)$ is an open subset of \mathbb{R}^{n}, and the inverse function $f^{-1}: f(U) \rightarrow \mathbb{R}^{n}$ is of class \mathcal{C}^{1}.

- Does this result extend to functions of class \mathcal{C}^{p} for every $p \leq \infty$? In other words, if f is of class \mathcal{C}^{p} does that guarantee the inverse f^{-1} is also of class \mathcal{C}^{p} ? (Hint: Use the formula $A^{-1}=\frac{1}{\operatorname{det}(A)} \cdot \operatorname{adj}(A)$ from linear algebra.)

Problem D. In this problem we will show that every symmetric $n \times n$ matrix A (with entries in \mathbb{R}) has at least one real eigenvalue. (This is the key to proving the full spectral theorem that \mathbb{R}^{n} admits an orthonormal eigenbasis for A.)
(a) We introduce the quadratic form $Q_{A}(x)=x A x^{T}$ and the Rayleigh quotient $R_{A}(x)=\frac{Q_{A}(x)}{\|x\|^{2}}($ defined for $x \neq 0)$. Show that $\left|R_{A}(x)\right| \leq\|A\|$ for all nonzero x. (Hint: Cauchy-Schwarz.)
(b) Verify the formulas $\nabla Q_{A}(x)=2 x A$ and $\nabla R_{A}(x)=2 x\left(A-R_{A}(x) I\right)$.
(c) Explain why $R_{A}(x)$ has a minimum and a maximum on $\mathbb{R}^{n}-\{0\}$. (Hint: $R_{A}(c x)=R_{A}(x)$ for all $c \neq 0$; so consider R_{A} on the unit circle.)
(d) Let x_{0} be a local extremum for $R_{A}(x)$. Deduce from (b) that $R_{A}\left(x_{0}\right)$ is an eigenvalue for A (with eigenvector x_{0}^{T}).
(e) Pinpoint where you used that A is symmetric.

[^0]: ${ }^{1}$ Its statement is recalled in Problem C below.

