MATH 31BH, HONORS MULTIVARIABLE CALCULUS, MIDTERM 2

Wednesday, March 1st, 2017, 1-1:50pm, MANDE B-150

- · Your Name: SOLUTIONS.
- ID Number:
- Section (circle): A01 (7:00 PM) A02 (8:00 PM)

All answers must be fully justified. You have an extra page at the very end of the exam.

Problem #	Points (out of 10)
1	
2	
3	
4	
5	
Total (out of 50):	

Problem 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $f(x,y) = x^2 \sin(y)$.

- (a) Find its partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at any point (x,y).
- (b) Write down the gradient $\nabla f(x, y)$.
- (c) Compute the directional derivative at $(\sqrt{2}, \frac{\pi}{4})$ in the direction $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.
- (d) Give an equation for the tangent plane to the graph of f at $(\sqrt{2}, \frac{\pi}{4})$.

(Hint: $\sin(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$.)

(a)
$$\frac{2f}{\partial x}(x,y) = 2x \sin(y)$$
 and $\frac{2f}{\partial y}(x,y) = x^2 \cos(y)$.
(b) $\nabla f(x,y) = (2x \sin(y), x^2 \cos(y))$.

(c)
$$f$$
 clearly (continuously) differentiable, so with $V = (\sqrt{12}, \sqrt{12})$: $\nabla f(\sqrt{2}, \frac{\pi}{4}) = \nabla f(\sqrt{2}, \frac{\pi}{4}) \cdot V = (\sqrt{12}, \sqrt{12}) \cdot V = (2, \sqrt{2}) \cdot (\sqrt{12}, \sqrt{12}) = 1 + \sqrt{2}$.

(4) The equation is, in coordinates
$$(x,y,z)$$
: $a=(\sqrt{2},\frac{\pi}{4})$.

$$z = f(a) + \frac{\partial f}{\partial x}(a)(x - \sqrt{2}) + \frac{\partial f}{\partial y}(a)(y - \frac{\pi}{4})$$

$$= \sqrt{2} + 2(x - \sqrt{2}) + \sqrt{2}(y - \frac{\pi}{4}).$$

$$= 2 \times + \sqrt{2} y + - (1 + \frac{\pi}{4}) \sqrt{2}.$$

Problem 2. Mark each statement *true* (T) or *false* (F). Justify your answers: If true briefly explain why, if false give a counterexample.

(a) A function is differentiable if all partial derivatives exist at all points.

(b) "Continuously differentiable" means continuous and differentiable.

ightharpoonup (c) The Jacobian matrix J of a function $\mathbb{R}^2 \to \mathbb{R}^2$ is symmetric $(J^T = J)$.

T (d) A function f with Jacobian matrix $Jf(x,y) = \begin{pmatrix} y & x \\ 1 & 1 \end{pmatrix}$ is differentiable.

(e) A differentiable function is necessarily continuous.

(a) FALSE:
$$f(x,y) = \frac{xy^2}{x^2+y^2}$$
 counterex., cf. Problem B on HW4.

(b) FALSE: "cont. diff." means all $\frac{\partial f}{\partial x_i}$ (exist and) are continuous.

- recall: x2sin(x) is diff, but not cont. diff.

(c) FALSE: Take any <u>non-sym</u>. matrix A and consider $f: \mathbb{R}^2 \to \mathbb{R}^2$; has Jacobian J = A. $\times \mapsto A \times -$ to be concrete: $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ gives

f(x,y) = y

(d) TRUE: If
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 has $Jf(x,y) = \begin{pmatrix} y & x \\ 1 & y \end{pmatrix}$.

— it's visibly continuously differentiable \Longrightarrow diff.

 $\begin{pmatrix} \frac{\partial f}{\partial x} = y \text{ and } \frac{\partial f}{\partial y} = x : \text{ cont.} \end{pmatrix}$

[Think of $f(x,y) = (xy, x+y)$.]

(C) TRUE:

$$f(a+h)-f(a) = \frac{f(a+h)-f(a)-A(h)}{\|h\|} \|h\| + A(h) \rightarrow 0.$$

Problem 3. Below J denotes the Jacobian matrix, and ∇ the gradient.

(a) Define
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $f(x,y) = (\cos(x+y), \sin(x-y))$. Find $Jf(x,y)$.

(b) Define
$$g: \mathbb{R}^2 \to \mathbb{R}$$
 by $g(x, y) = \sin(x^2 + y^3)$. Find $\nabla g(x, y)$.

(c) Define
$$h: \mathbb{R}^3 \to \mathbb{R}$$
 by $h(x, y, z) = e^{\cos(xy) + \sin(yz)}$. Find $\nabla h(x, y, z)$.

(Hint: Recall the formulas $\sin'(t) = \cos(t)$ and $\cos'(t) = -\sin(t)$.)

(L)
$$\Im f(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = \begin{pmatrix} -\sin(x+y) & -\sin(x+y) \\ \cos(x-y) & -\cos(x-y) \end{pmatrix}$$

(b) $\nabla g(x,y) = \begin{pmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} = \begin{pmatrix} 2 \times \cos(x^2 + y^3) & 3y^2 \cos(x^2 + y^3) \end{pmatrix}$

(c) $\nabla h(x,y,z) = \begin{pmatrix} \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} & \frac{\partial h}{\partial z} \end{pmatrix} = \begin{pmatrix} \cos(xy) + \sin(yz) \\ \frac{\cos(xy) + \sin(yz)}{2} & \frac{\cos(xy) + \sin(yz)}{2} \end{pmatrix}$

$$\left(-x\sin(xy)+z\cos(yz)\right)e$$

Problem 4. Let $U \subset \mathbb{R}^n$ be a *connected* open subset, by which we mean that for any two points $a, b \in U$ there is a continuous function $\gamma : [0, 1] \to U$, which is differentiable on (0, 1), such that $\gamma(0) = a$ and $\gamma(1) = b$.

- (a) Verify that convex \implies connected; then give an example of a connected non-convex set. (Hint: Recall "convex" means the segment $[a,b] \subset U$.)
- (b) Suppose $f: U \to \mathbb{R}$ is a differentiable function whose gradient ∇f vanishes identically in U. Prove that f must be a *constant* function.
- (c) Give an example showing that the conclusion in (b) is <u>false</u> when U is not connected. (Hint: Take U to be the union of two disjoint open balls.)

(a) If U is convex, may take $\chi(t) = a + t(b-a)$ which $R^{N} = 50$? is not convex, parametrizes the line segment but it is connected: $a = \frac{0}{4}$ Lab JCU.

(b) Let $a,b \in U$ be arbitrary. Must show f(a) = f(b). — By the Mean— Value Thm., applied to $g(t) := f(\gamma(t))$ (in one var.) f(b) - f(a) (well-defined!) U

$$\frac{g(1) - g(0)}{1 - o} = g'(s) = \nabla f(\chi(s)) \cdot \chi'(s) = 0.$$

(c) U= B1 UBZ disj. open balls. O by assumption.

¹Meaning that $\nabla f(a)$ is the zero-vector for all points $a \in U$.

Problem 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by the formula $f(x,y) = \frac{xy^2}{x^2 + y^4}$ at points $(x,y) \neq (0,0)$, and declare that f(0,0) = 0.

- (a) Show that f is not continuous at (0,0). (Hint: Substitute $y^2 = \alpha x$.)
- (b) Verify that the directional derivatives of f do exist at all points and in every direction.
- (c) For v = (a, b) compute $D_v f(0, 0)$ explicitly as a function of a and b.

(a)
$$f(x,y) = \frac{x(\alpha x)}{x^2 + \alpha^2 x^2} = \frac{\alpha}{1 + \alpha^2}$$
, so $\lim_{x \to \infty} f(x,y) = \int_{0,0}^{\infty} \frac{x(x,y)}{x^2 + \alpha^2 x^2} = \frac{\alpha}{1 + \alpha^2}$, so $\lim_{x \to \infty} f(x,y) = \int_{0,0}^{\infty} \frac{x(x,y)}{x^2 + \alpha^2 x^2} = \frac{\alpha}{1 + \alpha^2}$, so $\lim_{x \to \infty} f(x,y) = \int_{0,0}^{\infty} \frac{x(x,y)}{x^2 + \alpha^2 x^2} = \frac{\alpha}{1 + \alpha^2}$, so $\lim_{x \to \infty} f(x,y) = \int_{0,0}^{\infty} \frac{x(x,y)}{x^2 + \alpha^2 x^2} = \frac{\alpha}{1 + \alpha^2}$, so $\lim_{x \to \infty} f(x,y) = \int_{0,0}^{\infty} \frac{x(x,y)}{x^2 + \alpha^2 x^2} = \frac{\alpha}{1 + \alpha^2}$, so $\lim_{x \to \infty} f(x,y) = \int_{0,0}^{\infty} \frac{x(x,y)}{x^2 + \alpha^2 x^2} = \frac{\alpha}{1 + \alpha^2}$.

(b) Away from (0,0) the function f is clearly smooth, so the point of interest is the origin (0,0). Let v=(a,b) monzero

$$D_{y}f(0,0) = \lim_{t \to 0} \frac{f(ta,tb) - f(0,0)}{t} \qquad \text{(but arbitrary)}.$$

$$= \lim_{t\to 0} \frac{1}{t} \cdot \frac{(ta)(tb)^2}{(ta)^2 + (tb)^4}$$

$$(f(0,0)=0)$$

$$= \lim_{t \to 0} \frac{ab^2}{a^2 + t^2b^4}$$

$$= \frac{ab^2}{a^2}$$

$$= b^2 \text{ if } a \neq 0$$

 $\mathcal{D}_{\mathbf{v}}f(0,0)=0$

(which is the answer to part (c))

