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Problem 1. Let f: R? — R be the function defined by f(z,y) = % sin(y).
(a) Find its partial derivatives —g—g and %5 at any point (z,y).
(b) Write down the gradient Vf(z,y).

(c) Compute the directional derivative at (v/2, %) in the direction (%, %)

(d) Give an equation for the tangent plane to the graph of f at (v/2, .

(Hint: sin(%) = cos(%) = %)
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Problem 2. Mark each statement true (T) or false (F). Justify your answers:

If true briefly explain why, if false give a counterexample.

F (a) A function is differentiable if all partial derivatives exist at all points.

F (b) "Continuously differentiable” means continuous and differentiable.

F (c) The Jacobian matrix J of a function R? — R? is symmetric (JT = J).
.r (d) A function f with Jacobian matrix Jf(z,y) = (¥ }) is differentiable.

[ (e) A differentiable function is necessarily continuous.
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Problem 3. Below J denotes the Jacobian matrix, and V the gradient.
(a) Define f : R* —» R? by f(z,y) = (cos(z + y),sin(z — y)). Find Jf(z, ).
(b) Define g : R* — R by g(z,y) = sin(z? + 3?). Find Vg(z,).
(c) Define h: R® — R by h(z,y,z) = eV +sin2) Rind Vh(z, y, z).

(Hint: Recall the formulas sin’(t) = cos(t) and cos’(t) = —sin(t).)
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Problem 4. Let U C R™ be a connected open subset, by which we mean that
for any two points a,b € U there is a continuous function - : [0,1] = U, which
is differentiable on (0, 1), such that ¥(0) = a and v(1) = b.

(a) Verify that convex == connected; then give an example of a connected

non-convex set. (Hint: Recall ”convex” means the segment [a,b] C U.)

(b) Suppose f: U — R is a differentiable function whose gradient V f

vanishes identically! in U. Prove that f must be a constant function.

(c) Give an example showing that the conclusion in (b) is false when U is
not connected. (Hint: Take U to be the union of two disjoint open balls.)
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Problem 5. Let f : R* — R be defined by the formula f(x,y) = ;23_%;-1 at
points (x,y) # (0,0), and declare that f(0,0) = 0.
A<0. A2

(a) Show that f is not continuous at (0,0). (Hint: Substitute y2 = az.)
X (b) Verify that the directional derivatives of f do exist at all points and in
every direction.
(c) For v = (a,b) compute D, f(0,0) explicitly as a function of a and b.
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