Uniform Continuity

Def. \(f: X \rightarrow Y \), \(X, Y \) metric spaces.

f is uniformly continuous if

\[\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } d_X (x, x') < \delta \Rightarrow d_Y (f(x), f(x')) < \varepsilon, \forall x, x' \in X. \]

Note: \(f \) uniformly continuous on \(X \) \(\Rightarrow \)

\(f \) continuous at every \(x \in X \), but for a given \(\varepsilon > 0 \), the \(\delta \) defining the continuity at \(x \) is independent of \(x \).

Ex 1. \(X = [0,1] \), \(Y = \mathbb{R} \), \(f(x) = x^2 \)

For \(x, x' \in X \), \(|f(x) - f(x')| = |x^2 - x'^2| = |x - x'| |x + x'| \)

since \(x + x' \leq 2 \)

\[\leq 2 |x - x'| \]

\(f \) is uniformly continuous; for \(\varepsilon > 0 \), take \(\delta = \varepsilon/2 \). Then (\(\star \)) holds.

Note: If \(f: X \rightarrow Y \) continuous at every point \(x \in X \), it need not be uniformly continuous.
Ex 2. \(X = Y = \mathbb{R} \), \(f(x) = x^2 \). \(f \) is continuous i.e. continuous at every \(x \in X \). However claim: \(f \) is not uniformly continuous.

For this, take \(\varepsilon = 1 \), and any \(\delta > 0 \). Then for \(x_1 = \frac{1}{\delta} + \frac{\delta}{2} \), \(x_2 = \frac{1}{\delta} \), \(x_1 - x_2 = \frac{\delta}{2} \), \(x_1 + x_2 \geq \frac{2}{\delta} \).

\[
|f(x_1) - f(x_2)| = (x_1 + x_2)(x_1 - x_2) > \frac{\delta}{2} \cdot \frac{\delta}{2} = 1.
\]

Hence, for \(\varepsilon = 1 \), \(\exists \delta > 0 \) satisfying (**) since \(|x_1 - x_2| = \frac{\delta}{2} < \delta \) \& \(|f(x_1) - f(x_2)| > 1 \).

Thm. \(X \text{ c.p.t.}, f : X \rightarrow Y \) continuous \(\implies f \text{ uniformly continuous.} \)

Pf. (Tricky!). Must show given \(\varepsilon > 0 \) \(\exists \delta > 0 \) s.t.

\[
d_X(p, q) < \delta \implies d_Y(f(p), f(q)) < \varepsilon
\]

For \(p \in X \) by continuity at \(p \), \(\exists \delta_p \) s.t.

\[
d_X(p, q) < \delta_p \implies d_Y(f(p), f(q)) < \frac{\varepsilon}{2}, \quad \forall q \in X.
\]

Since \(X = \bigcup_{p \in X} N_{\delta_p/2} (p) \) \(X \text{ c.p.t.} \implies \exists p_1, \ldots, p_n \in X \)

s.t. \(X = N_{\delta_{p_1}/2} (p_1) \cup \ldots \cup N_{\delta_{p_n}/2} (p_n) \).
We claim \(\delta = \min_{1 \leq i \leq m} \frac{\delta p_i}{2} \) will work, i.e.

\[
\forall p,q \in X, \quad d_X(p,q) < \delta \implies d_Y(f(p),f(q)) < \varepsilon
\]

Given \(p \in X \), \(\exists j \) s.t. \(d_X(p,p_j) < \frac{\delta p_j}{2} < \delta p_j \)

and hence \((1)\) \(d_Y(f(p),f(p_j)) < \varepsilon/2 \).

\[
\forall q \in X, \quad d_X(q,p_j) \leq d_X(q,p) + d_X(p,p_j)
\]

If \(d_X(p,q) < \delta \) then \(d_X(q,p_j) < \delta + \frac{\delta p_j}{2} \leq \delta p_j \)

by the choice of \(\delta \). Hence

\[
(2) \quad d_Y(f(q),f(p_j)) < \varepsilon/2
\]

We have \(d_Y(f(p),f(q)) \leq d_Y(f(p),f(p_j)) + d_Y(f(p_j),f(q)) \)

by \((1)\) \& \((2)\) \(< \varepsilon/2 + \varepsilon/2 = \varepsilon \). \(\square\)

Continuity & Connectedness

Thm. If \(f : X \to Y \) continuous & \(X \) connected,

then \(f(X) \) is connected.

Recall that a metric space \(X \) is connected \(\iff\) the only subsets of \(X \) that are both open & closed are \(X \) and \(\emptyset \).
Cor. (Intermediate Value Theorem)

Let \(f : [a, b] \rightarrow \mathbb{R} \) continuous. If \(f(a) < f(b) \) then for any \(c \), \(f(a) < c < f(b) \), \(\exists x \in (a, b) \) s.t. \(f(x) = c \).

Note: By replacing \(f \) by \(-f\), we obtain an analogous result if \(f(b) < f(a) \).

Pf of Cor 1. Since \([a, b]\) is connected, by Thm, the image \(f([a,b]) \) is also connected.

Since the only connected subsets of \(\mathbb{R} \) are intervals, if \(f(a) < c < f(b) \) then \(c \in f([a,b]) \). //

Cor 2. If \(f : [a, b] \rightarrow \mathbb{R} \) continuous, then \(f([a,b]) = [\inf_{x \in [a,b]} f(x), \sup_{x \in [a,b]} f(x)] \).

Pf. of Cor 2. Since \(f([a,b]) \) is cplt and connected, it must be a closed, bounded interval. Since \(\sup f([a,b]) \) & \(\inf f([a,b]) \) are in \(f([a,b]) \), they must be the endpoints. //