Problem 1 (5 points). Let \(f(x) = \sqrt{x-4} + 1 \).

(a) Determine a formula for \(f^{-1}(x) \).

\[
\begin{align*}
\text{Let } & y = f(x) = \sqrt{x-4} + 1 \\
\text{Then } & y = \sqrt{x-4} + 1 \\
\text{Solve for } & x: \\
& y - 1 = \sqrt{x-4} \\
& (y-1)^2 = x-4 \\
& (y-1)^2 + 4 = x
\end{align*}
\]

\(\therefore f^{-1}(y) = (y-1)^2 + 4 \)

(b) What is the range of \(f(x) \)?

\(f(x) = \sqrt{x-4} + 1 \) is like \(\sqrt{x} \), but shifted right and up. The radical \(\sqrt{x-4} \) only outputs numbers \(\geq 0 \), and then I add 1 to the radical, so \(\sqrt{x-4} + 1 \) is always \(\geq 1 \). Therefore, range is \(\boxed{y \geq 1} \).

(c) What is the domain of \(f^{-1}(x) \)?

Domain of \(f^{-1}(x) \) is \(\boxed{y \geq 1} \)

(since the domain of \(f^{-1}(x) \) is the same as the range of \(f(x) \))
Problem 2 (5 points). (a) Sketch the line \(p(d) = \frac{1}{4}d - 2 \).

(b) Let \(q(d) = \frac{1}{2}d + 3 \). Where do the lines \(p(d) \) and \(q(d) \) intersect? Write your answer as a coordinate pair.

Set \(p(d) = q(d) \)

So \(\frac{1}{4}d - 2 = \frac{1}{2}d + 3 \)

Solve for \(d \):

\[
\frac{1}{4}d = \frac{1}{2}d + 5
\]

\[
\frac{1}{4}d - \frac{1}{2}d = 5
\]

\[
-\frac{1}{4}d = 5
\]

\[
d = -20
\]

Plug in \(d \): \(p(20) = \frac{1}{2} \cdot (-20) + 3 = -10 + 3 = -7 \)

So, intersects at \((-20, -7) \)