Random Walk Algorithms: Homework 4

1. Write code to "blur" a 1D "greyscale image" on $\mathbb{Z} / 128 \mathbb{Z}$, i.e., $\vec{u}_{0} \in\{0,1, \ldots, 255\}^{128}$, using B^{t} where $B=\left(X+2 I+X^{-1}\right) / 4$. That is, pixel s in the "blurred image" is $\left\lfloor\left(B^{t} \vec{u}_{0}\right)_{s}\right\rceil \in\{0,1, \ldots, 255\}$. Plot two examples to illustrate that your code is working as it should, for different values of t.
2. Write code to "unblur" the output of your blurring code, without using the original "image".
a. First do it assuming that you know which t was used, i.e., that the image was blurred by B^{t} for the correct t.
b. Plot the results of unblurring the examples you showed in problem 1 and compare them with the originals.
c. Second, suggest a strategy for unblurring if you don't know t.
