Random Walk Algorithms: Homework 5

Consider a random walk on $\mathbb{Z} / N \mathbb{Z}, N \in \mathbb{N}$, with a "sink" at $N-1$, i.e., with a transition probability matrix

$$
P=\left(\begin{array}{llllll}
1 / 2 & 1 / 4 & & & & \\
1 / 4 & 1 / 2 & 1 / 4 & & & \\
& 1 / 4 & 1 / 2 & & & \\
& & 1 / 4 & \ddots & 1 / 4 & \\
& & & & 1 / 2 & \\
1 / 4 & & & & 1 / 4 & 1
\end{array}\right)
$$

1. Write code to start at a uniformly random state and evolve according to this random walk. For $N \in\{10,20,30\}$, show histograms of the position after $T \in\{100,500,1000\}$ steps.
2. a. Find a stationary distribution for the stochastic process defined by P.
b. Let $\theta=\pi / N$. Show that the vector v with

$$
v_{s}= \begin{cases}-\sin ((s+1) \theta) & \text { if } s \in\{0,1, \ldots, N-2\} \\ \sin \theta /(1-\cos \theta) & \text { if } s=N-1\end{cases}
$$

is an eigenvector of P and find its eigenvalue.
c. Use your answers for questions 2.a. and 2.b. to explain your results in problem 1, specifically how close each histogram is to the stationary distribution.

