Random Walk Algorithms: Homework 8

The quantum algorithm to solve the SEARCH problem for $w \in \{1, ..., N\}$ that we derived in class consists of repeatedly applying the unitary transformation

$$(2uu^{\dagger}-I)(I-2\hat{e}_w\hat{e}_w^{\dagger}),$$

where $u = (1, ..., 1)/\sqrt{N}$ and \hat{e}_w is the vector with components $(\hat{e}_w)_x = \delta_{xw}$, to the initial vector u. Let

$$\psi_t = \left((2uu^{\dagger} - I)(I - 2\hat{e}_w \hat{e}_w^{\dagger}) \right)^t u.$$

- 1. For N = 1024, plot $|\hat{e}_w^{\dagger}\psi_t|^2$ for $t \in \{0, 1, \dots, 50\}$. Which is the first value of t at which this probability is a local maximum (*i.e.*, greater than at t 1 and at t + 1)?
- 2. Let $W \subset \{1, \ldots, N\}$ have k elements. Modify the quantum algorithm above by replacing $I 2\hat{e}_w \hat{e}_w^{\dagger}$ with

$$I - 2\sum_{w \in W} \hat{e}_w \hat{e}_w^{\dagger}$$

This is an algorithm for finding any one of the elements in W. For N = 1024, plot the success probability

$$\sum_{w \in W} |\hat{e}_w^{\dagger} \psi_t|^2,$$

for $t \in \{0, 1, ..., 50\}$ when k = 4 and k = 16. In each case, which is the first value of t at which this probability is a local maximum (*i.e.*, greater than at t - 1 and at t + 1)?

3. [Bonus] Let T_k be the first value of t at which the success probability for finding one of the k elements in $W \subset \{1, \ldots, N\}$ is a local maximum. For example, we proved in class that

$$T_1 = \left\lfloor \frac{\pi}{4}\sqrt{N} - \frac{1}{2} \right\rceil.$$

Show that $T_k = O(\sqrt{N/k})$ as $N \to \infty$.