Random Walk Algorithms: Homework 8

The quantum algorithm to solve the SEARCH problem for $w \in\{1, \ldots, N\}$ that we derived in class consists of repeatedly applying the unitary transformation

$$
\left(2 u u^{\dagger}-I\right)\left(I-2 \hat{e}_{w} \hat{e}_{w}^{\dagger}\right)
$$

where $u=(1, \ldots, 1) / \sqrt{N}$ and \hat{e}_{w} is the vector with components $\left(\hat{e}_{w}\right)_{x}=\delta_{x w}$, to the initial vector u. Let

$$
\psi_{t}=\left(\left(2 u u^{\dagger}-I\right)\left(I-2 \hat{e}_{w} \hat{e}_{w}^{\dagger}\right)\right)^{t} u
$$

1. For $N=1024$, plot $\left|\hat{e}_{w}^{\dagger} \psi_{t}\right|^{2}$ for $t \in\{0,1, \ldots, 50\}$. Which is the first value of t at which this probability is a local maximum (i.e., greater than at $t-1$ and at $t+1$)?
2. Let $W \subset\{1, \ldots, N\}$ have k elements. Modify the quantum algorithm above by replacing $I-2 \hat{e}_{w} \hat{e}_{w}^{\dagger}$ with

$$
I-2 \sum_{w \in W} \hat{e}_{w} \hat{e}_{w}^{\dagger} .
$$

This is an algorithm for finding any one of the elements in W. For $N=1024$, plot the success probability

$$
\sum_{w \in W}\left|\hat{e}_{w}^{\dagger} \psi_{t}\right|^{2}
$$

for $t \in\{0,1, \ldots, 50\}$ when $k=4$ and $k=16$. In each case, which is the first value of t at which this probability is a local maximum (i.e., greater than at $t-1$ and at $t+1$)?
3. [Bonus] Let T_{k} be the first value of t at which the success probability for finding one of the k elements in $W \subset\{1, \ldots, N\}$ is a local maximum. For example, we proved in class that

$$
T_{1}=\left\lfloor\frac{\pi}{4} \sqrt{N}-\frac{1}{2}\right\rceil
$$

Show that $T_{k}=O(\sqrt{N / k})$ as $N \rightarrow \infty$.

