Random Walk Algorithms: Bonus Problem

Consider a random walk $\left\{D_{t} \mid t \in \mathbb{N}\right\}$ on the set $\{0,1, \ldots, n\}$ defined by the transition probability matrix with entries:

$$
P_{i j}= \begin{cases}1 & \text { if } j=n \text { and } i=j-1 \\ p & \text { if } 0<j<n \text { and } i=j-1 \\ 1-p & \text { if } 0<j<n \text { and } i=j+1 \\ 1 & \text { if } j=0 \text { and } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Let

$$
T_{d}=\min _{t \geq 0}\left\{D_{t}=0 \mid D_{0}=d\right\}
$$

How does $\mathrm{E}\left[T_{d}\right]$ depend on n and d for $p=1 / 2$? For $p>1 / 2$? For $p<1 / 2$?

