
1 April 2019

Random Walk Algorithms: Lecture 1

David A. Meyer

In which the topic of these notes is specified, namely random walk algorithms,

and the notion of algorithm is introduced etymologically and then by the example

of deterministic primality testing algorithms and their complexities.

Introduction

There are multiple reasons for studying random walk algorithms. Several practically use-
ful algorithms are random walk algorithms, including Google’s PageRank algorithm and
Markov Chain Monte Carlo algorithms. Furthermore, they have conceptually important
connections with physics, specifically the heat equation. Finally, an understanding of
random walk algorithms provides a foundation for studying quantum walk algorithms.

Motivated by these reasons, the plan for these notes is to introduce random walks, explain
their connection to physics, and then describe several random walk algorithms in detail.
Then we will introduce quantum walks, explain their connection to physics, and finally
describe at least one quantum walk algorithm.

Algorithms

Algorithms are well-defined computational processes, often for solving problems [1]. The
word “algorithm” comes from the nisba (derivational adjective) [2] in the name of the
Persian scholar Muh. ammad ibn Mūsā al-K

¯
wārizmı̄ [3]. His text Al-kitāb al-mukhtas.ar

f̄ıh. isāb al-jabr wal-muqābala, Compendium on Calculation by Completing and Equating,
was perhaps the first algebra textbook, and included algorithms for solving quadratic
equations [1,4]. For example, consider the problem “a Square and ten Roots are equal to
thirty-nine Dirhems” [5, p.13], which he solves by completing the square as in this picture:

�
� ��

�� ��

��

��

=

1



In modern notation, we would implement this algorithm as [4]:

x2 + 10x = 39

⇒x2 + 2 · 5x = 39

⇒x2 + 2 · 5x+ 52 = 39 + 52

⇒ (x+ 5)2 = 64

⇒x+ 5 = 8 (negative numbers were unknown in the 9th century!)

⇒x = 3

To give another example of an algorithm, consider how you would decide if a number is
prime. We all learn in school that a straightforward way to do this is to check whether
it is divisible by smaller numbers, and that we don’t need to check any that are larger
than its square root, since if one divisor is larger than the square root, then the quotient,
and hence another divisor, must be smaller than the square root. Let us write this out
carefully as an algorithm:

input: N ∈ N.
output: True if N is prime; False if not.

prime ← True

if N = 1, prime ← False

else d = 2;
else while d ≤

√
N ,

else if d|N , prime ← False

else else d← d+ 1
return prime

An important consideration for any algorithm is how efficient it is—how long, or how
many steps, does it take to complete. (An even more important consideration, of course,
is whether it returns the correct answer! This algorithm does, if we agree that 1 is not
a prime number, more about which later.) Since this algorithm checks divisibility by d,
for each integer in {2, 3, 4, . . . ,

√
N}, it does ⌊

√
N⌋ − 1 divisions of N . And if you think

about the long division algorithm you learned in elementary school, you will realize that
each digit in the quotient (of which there are about the same number as in N) must be
multiplied by the divisor d, which is of size

√
N/2 on average. Since N has n = logN digits

and
√
N/2 has about n/2 digits, the total running time (counting only the multiplications)

for large N is O
(
√
N(logN)2

)

. Here we are using “big-O” notation:

DEFINITION. f(x) = O
(

g(x)
)

as x → ∞ iff there exist k,M > 0 such that for all x ≥ M ,

|f(x)| ≤ kg(x). Also, f(x) = Õ
(

g(x)
)

if for some c > 0, f(x) = O
(

g(x) logc x
)

; this is
called “soft-O” notation.

Of course, it is easy to improve this algorithm. The simplest thing to do is to replace the

2



check at the beginning of the while loop with

else while d ≤
√
N and prime

so that as soon as N is known not to be prime the algorithm terminates. But of course
this only speeds up the algorithm when N is not prime; when it is prime all the possible
factors will be checked. So while this reduces the average case complexity, it does not
reduce the worst case complexity.

Long division, however, is suboptimal. An asymptotically better option, for example, is
Newton-Raphson division [6], which has the complexity of multiplication of two n digit
numbers. This was conjectured by Arnold Schönhage and Volker Strassen in 1971 to be
O(n logn) [7]; as of March 2019, this may have been proved [8]. If so, the complexity of
this primality testing algorithm would be reduced to O(

√
N logN log logN).

In fact, a polynomial (in n = logN) time class of primality testing algorithms was dis-
covered in 2002 by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena [9]. Their original
algorithm had complexity Õ(n12); by the time it was published it had been improved to
Õ(n15/2). Subsequently, Hendrik Lenstra and Carl Pomerance improved this to Õ(n6) [10].

All of these algorithms are deterministic; they have no probabilistic components. For
primality testing, and other problems, random algorithms can be superior for practical
purposes. Random algorithms include the random walk algorithms on which we will focus,
so in the next few lectures we will review basic ideas from probability theory.

References

[1] D. E. Knuth, “Algorithms in modern mathematics and computer science”, Stanford
Department of Computer Science Report No. STAN-CS-80-786 (1980).

[2] A. F. L. Beeston, Arabic Nomenclature: A summary guide for beginners (Oxford:
University Press 1971).

[3] Oxford English Dictionary, “algorism, n.”.
[4] P. Maher, “From al-jabr to algebra”, Mathematics in School 27 (1998) 14-15.
[5] F. Rosen, editor and translator, The Algebra of Mohammad ben Musa (London:

Oriental Translation Fund 1831).
[6] M. J. Flynn, “On division by functional iteration”, IEEE Transactions on Computers

C-19 (1970) 702-706.
[7] A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen”, Computing

7 (1971) 281–292.
[8] D. Harvey and J. Van Der Hoeven, “Integer multiplication in time O(n logn)”, hal-

02070778 (2019).
[9] M. Agrawal, N. Kayal and N. Saxena, “PRIMES is in P”, Annals of Mathematics 160

(2004) 781–793.
[10] H. W. Lenstra, Jr. and C. B. Pomerance, “Primality testing with Gaussian periods”,

Journal of the European Mathematical Society (2019) doi: 10.4171/JEMS/861.

3


