Random Walk Algorithms: Lecture 10

David A. Meyer

In which the random walk evolution of a probability distribution inspires the solution to the heat equation with specified initial condition.

Initial conditions

The heat equation describes the time evolution of a function of position, so a well-defined problem is to compute the evolution of some *initial condition*, u(0,s) = f(s). To figure out how to do this using the heat kernel we found in Lecture 8, we draw inspiration again from the $B = (X + 2I + X^{-1})/4$ random walk on \mathbb{Z} .

Suppose the initial probability distribution vector is not \hat{e}_0 , but is rather

$$\vec{u}_0 = \sum_r u_{0,r} \hat{e}_r$$

Then

$$u_{0,s} = \langle \vec{u}_0, \hat{e}_s \rangle = \langle \sum_r u_{0,r} \hat{e}_r, \hat{e}_s \rangle = \sum_r u_{0,r} \delta_{s,r}, \tag{1}$$

<u>0</u>1

where $\langle\cdot,\cdot\rangle$ denotes the usual inner (dot) product and

$$\delta_{s,r} = \begin{cases} 1 & \text{if } s - r = 0; \\ 0 & \text{otherwise} \end{cases}$$

is the Kronecker delta. After one timestep,

$$u_{1,s} = \langle \vec{u}_1, \hat{e}_s \rangle = \langle B \sum_r u_{0,r} \hat{e}_r, \hat{e}_s \rangle = \sum_r u_{0,r} \langle B \hat{e}_r, \hat{e}_s \rangle = \sum_r u_{0,r} \frac{1}{4} (\delta_{s,r+1} + 2\delta_{s,r} + \delta_{s,r-1}),$$

so, since B is symmetric, we can write

$$B\delta_{s,r} = \frac{1}{4}(\delta_{s,r+1} + 2\delta_{s,r} + \delta_{s,r-1}).$$

Similarly, after t timesteps,

$$u_{t,s} = \langle \vec{u}_t, \hat{e}_s \rangle = \langle B^t \sum_r u_{0,r} \hat{e}_r, \hat{e}_s \rangle = \sum_r u_{0,r} \langle B^t \hat{e}_r, \hat{e}_s \rangle = \sum_r u_{0,r} \frac{1}{2^{2t}} \sum_{k=0}^{2t} \binom{2t}{k} \delta_{s,r+t-k},$$
(2)

and we write

$$B^t \delta_{s,r} = \sum_{k=0}^{2t} \binom{2t}{k} \delta_{s,r+t-k}$$

These equations have continuous analogues. Suppose $f \in C_0^{\infty}(\mathbb{R})$. Then the analogue of (1) is:

$$u(0,s) = f(s) = \langle f, \delta_s \rangle = \int f(r) \,\delta(s-r) \mathrm{d}r,\tag{3}$$

and the analogue of (2) is:

$$u(t,s) = \int f(r) \frac{1}{\sqrt{4\pi\alpha t}} e^{-(s-r)^2/(4\alpha t)} \mathrm{d}r.$$
(4)

Combining functions in this way is often useful, and has a name:

DEFINITION. Let f and g be integrable functions on \mathbb{R} . Then the convolution of f with g is

$$(f * g)(s) = \int f(r) g(s - r) \mathrm{d}r.$$

THEOREM. The convolution of f with the Gaussian kernel given in (4) solves the initial value problem u(0, x) = f(x) with u(t, s) satisfying the heat equation.

Proof. At t = 0, (4) becomes (3), so it satisfies the initial condition. For t > 0, the integrand in (4) is a continuous and differentiable function of t so

$$\frac{\partial}{\partial t} \int f(r) \frac{1}{\sqrt{4\pi\alpha t}} e^{-(s-r)^2/(4\alpha t)} \mathrm{d}r = \int f(r) \frac{\partial}{\partial t} \left(\frac{1}{\sqrt{4\pi\alpha t}} e^{-(s-r)^2/(4\alpha t)}\right) \mathrm{d}r.$$

Similarly,

$$\alpha \frac{\partial^2}{\partial s^2} \int f(r) \frac{1}{\sqrt{4\pi\alpha t}} e^{-(s-r)^2/(4\alpha t)} \mathrm{d}r = \int f(r) \,\alpha \frac{\partial^2}{\partial s^2} \Big(\frac{1}{\sqrt{4\pi\alpha t}} e^{-(s-r)^2/(4\alpha t)} \Big) \mathrm{d}r.$$

But we already learned that the heat kernel satisfies the heat equation, so these two expressions are equal.

Simulation

In fact, the approximation to the binomial distribution by the heat kernel we learned in Lecture 9 also justifies the following simulation algorithm for the heat equation, in which $N \in \mathbb{N}$ is chosen large enough to achieve a desired accuracy:

input: $a < b \in \mathbb{R}$; $f : \mathbb{R} \to \mathbb{R}$, f(x) = 0 for $x \notin [a, b]$, $\int_{a}^{b} f(x) dx < \infty$; $t_{f} > 0$. output: $u(t_{f}, x)$ for u(t, x) solving the heat equation with u(0, x) = f(x).

$$\Delta x \leftarrow (b-a)/N$$

for $s = 0$ to $N - 1$ do

$$u_{0,s} \leftarrow \int_{a+(s-1)\Delta x}^{a+s\Delta x} f(x) \, \mathrm{d}x$$
$$\Delta t \leftarrow (\Delta x)^2 / (4\alpha)$$
$$n \leftarrow \lfloor t_{\mathrm{f}} / \Delta t \rceil$$
$$\vec{u}_n \leftarrow B^n \vec{u}_0$$
return \vec{u}_n

where the output is interpreted as $u(t_{\rm f}, x) = u_{n, \lfloor (x-a)/\Delta x \rceil}$. This algorithm is not explicit about how to calculate $B^n \vec{u}_0$; we will learn more about that in the following lectures.