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In which the random walk evolution of a probability distribution inspires the so-
lution to the heat equation with specified initial condition.

Initial conditions

The heat equation describes the time evolution of a function of position, so a well-defined
problem is to compute the evolution of some initial condition, u(0,s) = f(s). To figure

out how to do this using the heat kernel we found in Lecture 8, we draw inspiration again
from the B = (X + 21 + X~!)/4 random walk on Z.

Suppose the initial probability distribution vector is not €y, but is rather
ﬁo = Z U/O,rér'
T

Then
Ug,s = <ﬁ07é5> — <Z UO,réra és) — ZUO,T(;S,W (1)

where (-, -) denotes the usual inner (dot) product and

5 :{1 ifs—r=0;
= 0 otherwise

is the Kronecker delta. After one timestep,
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so, since B is symmetric, we can write
1
B(Ss,r = Z(ds,r—l—l + 255,7" + 6s,r—1>-
Similarly, after t timesteps,
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Ut,s — <Ut7 €5> = <Bt ;UO,T6T765> = ;U07r<Bt€r7 €5> = ;U/O’Tﬁ kZO (k)és’r_'_t_k’
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and we write



These equations have continuous analogues. Suppose f € C§°(R). Then the analogue of
(1) is:

u(0,5) = £(s) /f (s —r)d 3)

and the analogue of (2) is:

e~ (5= /(at) gy (4)

Combining functions in this way is often useful, and has a name:

DEFINITION. Let f and g be integrable functions on R. Then the convolution of f with g
is

(+9)(s) = [ £r) g5 =1
THEOREM. The convolution of f with the Gaussian kernel given in (4) solves the initial
value problem u(0,z) = f(x) with u(t, s) satisfying the heat equation.

Proof. At t = 0, (4) becomes (3), so it satisfies the initial condition. Fot ¢t > 0, the
integrand in (4) is a continuous and differentiable function of ¢ so

(s—r)2/(4at)d o / 2 1 —(s—7)2/(4at) d
e r= r e T,
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Similarly,

2
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But we already learned that the heat kernel satisfies the heat equation, so these two
expressions are equal. I

Simulation

In fact, the approximation to the binomial distribution by the heat kernel we learned in
Lecture 9 also justifies the following simulation algorithm for the heat equation, in which
N € N is chosen large enough to achieve a desired accuracy:

b
input: a<beR; f: R — R, f(a:)zOforx%[a,b],/f(a:)da:<oo; te > 0.

output: u(ts, z) for u(t, x) solving the heat equation with u(0,x) = f(z).

Az < (b—a)/N
for s=0to N —1do



a+sAx
Uy, s f(z)dx
at(s—1)Ax
At + (Ax)?/(4a)
n < |te/At]
ﬁn — Bnl_[o
return i,

where the output is interpreted as u(tf, ) = Uy, |(z—a)/a2]- This algorithm is not explicit
about how to calculate B™uy; we will learn more about that in the following lectures.



