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David A. Meyer

In which the random walk evolution of a probability distribution inspires the so-

lution to the heat equation with specified initial condition.

Initial conditions

The heat equation describes the time evolution of a function of position, so a well-defined
problem is to compute the evolution of some initial condition, u(0, s) = f(s). To figure
out how to do this using the heat kernel we found in Lecture 8, we draw inspiration again
from the B = (X + 2I +X−1)/4 random walk on Z.

Suppose the initial probability distribution vector is not ê0, but is rather

~u0 =
∑

r

u0,r êr.

Then
u0,s = 〈~u0, ês〉 = 〈

∑

r

u0,r êr, ês〉 =
∑

r

u0,rδs,r, (1)

where 〈·, ·〉 denotes the usual inner (dot) product and

δs,r =
{

1 if s− r = 0;
0 otherwise

is the Kronecker delta. After one timestep,

u1,s = 〈~u1, ês〉 = 〈B
∑

r

u0,r êr, ês〉 =
∑

r

u0,r〈Bêr, ês〉 =
∑

r

u0,r
1

4
(δs,r+1 + 2δs,r + δs,r−1),

so, since B is symmetric, we can write

Bδs,r =
1

4
(δs,r+1 + 2δs,r + δs,r−1).

Similarly, after t timesteps,

ut,s = 〈~ut, ês〉 = 〈Bt
∑

r

u0,rêr, ês〉 =
∑

r

u0,r〈Btêr, ês〉 =
∑

r

u0,r
1

22t

2t
∑

k=0

(

2t

k

)

δs,r+t−k,

(2)
and we write

Btδs,r =
2t
∑

k=0

(

2t

k

)

δs,r+t−k.
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These equations have continuous analogues. Suppose f ∈ C∞
0 (R). Then the analogue of

(1) is:

u(0, s) = f(s) = 〈f, δs〉 =
∫

f(r) δ(s− r)dr, (3)

and the analogue of (2) is:

u(t, s) =

∫

f(r)
1√
4παt

e−(s−r)2/(4αt)dr. (4)

Combining functions in this way is often useful, and has a name:

DEFINITION. Let f and g be integrable functions on R. Then the convolution of f with g
is

(f ∗ g)(s) =
∫

f(r) g(s− r)dr.

THEOREM. The convolution of f with the Gaussian kernel given in (4) solves the initial

value problem u(0, x) = f(x) with u(t, s) satisfying the heat equation.

Proof. At t = 0, (4) becomes (3), so it satisfies the initial condition. Fot t > 0, the
integrand in (4) is a continuous and differentiable function of t so

∂

∂t

∫

f(r)
1√
4παt

e−(s−r)2/(4αt)dr =

∫

f(r)
∂

∂t

( 1√
4παt

e−(s−r)2/(4αt)
)

dr.

Similarly,

α
∂2

∂s2

∫

f(r)
1√
4παt

e−(s−r)2/(4αt)dr =

∫

f(r)α
∂2

∂s2

( 1√
4παt

e−(s−r)2/(4αt)
)

dr.

But we already learned that the heat kernel satisfies the heat equation, so these two
expressions are equal.

Simulation

In fact, the approximation to the binomial distribution by the heat kernel we learned in
Lecture 9 also justifies the following simulation algorithm for the heat equation, in which
N ∈ N is chosen large enough to achieve a desired accuracy:

input: a < b ∈ R; f : R→ R, f(x) = 0 for x 6∈ [a, b],

∫ b

a

f(x) dx <∞; tf > 0.

output: u(tf , x) for u(t, x) solving the heat equation with u(0, x) = f(x).

∆x← (b− a)/N
for s = 0 to N − 1 do
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u0,s ←
∫ a+s∆x

a+(s−1)∆x

f(x) dx

∆t← (∆x)2/(4α)
n← ⌊tf/∆t⌉
~un ← Bn~u0

return ~un

where the output is interpreted as u(tf , x) = un,⌊(x−a)/∆x⌉. This algorithm is not explicit
about how to calculate Bn~u0; we will learn more about that in the following lectures.
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