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Random Walk Algorithms: Lectures 13 & 14

David A. Meyer

In which the discrete Fourier transform is derived, and used to diagonalize the

transition probability matrix for homogeneous random walks in one dimension,

and the problem of unblurring is revisited.

The discrete Fourier transform

To diagonalize X , notice that XN = I, so if (λ,~v) is an (eigenvalue, eigenvector) pair for
X , i.e., X~v = λ~v, with ~v 6= 0, then

~v = I~v = XN~v = λN~v,

so we can conclude λN = 1. That is, if we set ω = e2πi/N , the set of eigenvalues of X is
{

ωk | k ∈ {0, . . . , N − 1}
}

.

To find the corresponding eigenvectors we must solve:

0 = (X − ωkI)~v =
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.

Setting v0 = 1, this implies 1−ωkv1 = 0, so v1 = ω−k. Then ω−k−ωkv2 = 0, so v2 = ω−2k,
etc. Normalizing the eigenvectors to have norm 1 gives

f̂k =
1√
N
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ω−k
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ω−(N−1)k













.

Denote conjugate transpose by †, and the inner product on C
N by 〈u|v〉 = u†v. Then we

can compute:

〈f̂j|f̂k〉 = f̂ †
j f̂k =

1

N

N−1
∑

n=0

ωnjω−nk =
1

N

N−1
∑

n=0

ωn(j−k) =

{

1

N

1− ωN(j−k)

1− ωj−k
= 0 if j 6= k;

1 if j = k,
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to conclude that the set {f̂k} is orthonormal. Since the f̂k are the columns of the diago-
nalizing matrix,

F =
1√
N













1 1 1 1
1 ω−1 ω−2 · · · ω−(N−1)

1 ω−2 ω−4

...
. . .

1 ω−(N−1) ω−(N−1)2













and F †F = I = FF † by the orthonormality of the set {f̂k}, so F−1 = F †, i.e., F is
unitary. F is called the discrete Fourier transform, perhaps first written down in this form
by Sylvester [1].

Diagonalizing the transition probability matrix

As we noted in Lecture 12, since F diagonalizes X , it also diagonalizes B:

F−1BF

=
1

4
F−1(X + 2I +X−1)F

=
1

4
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,

so the set of eigenvalues of B is

{

λk =
1

4
(ωk + ω−k + 2) =

1

2
(cos kθ + 1)

∣

∣

∣
k ∈ {0, . . . , ⌊N/2⌋}

}

,

where θ = 2π/N . Notice immediately that λ0 = 1, with eigenspace spanned by f̂0 =

(1, 1, . . . , 1)/
√
N ; λk = λN−k for 0 < k < N/2, with eigenspace spanned by f̂k and f̂N−k;

λN/2 = 0, if N even, with eigenspace spanned by f̂N/2 = (1,−1, . . . , 1,−1)/
√
N ; and also

|λk| < 1 for k > 0. f̂0 and f̂N/2 are shown below: the black dots represent the elements of
Z/NZ; the red dots above or below them the corresponding component of the eigenvectors;
and with the red curves anticipating the next paragraph.
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To get real eigenvectors for the two dimensional λk eigenspace when 0 < k < N/2, set

ĉk =
f̂N−k + f̂k√

2
=

√

2

N
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cos θ
cos 2θ

...
cos(N − 1)θ













and ŝk =
f̂N−k − f̂k

i
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sin(N − 1)θ













,

and define ĉ0 = f̂0 and, when N is even, ĉN/2 = f̂N/2. It follows immediately from the

orthonormality of the elements in the basis {f̂k} that the the elements in {ĉk} ∪ {ŝk} also
form an orthonormal basis. The diagrams below show ĉ1 and ŝ1, and then ĉ2 and ŝ2.

Evolving eigencomponents

Since the sets {f̂k} and {ĉk} ∪ {ŝk} are orthonormal bases, we can expand an initial
probability distribution vector as a linear combination of elements in either:

~u0 =
N−1
∑

k=0

〈f̂k|~u0〉f̂k =

N/2
∑

k=0

〈ĉk|~u0〉ĉk +

⌈N/2−1⌉
∑

k=1

〈ŝk|~u0〉ŝk.
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The advantage of doing this is that we can compute ~ut easily:

~ut = Bt~u0

=

N/2
∑

k=0

〈ĉk|~u0〉Btĉk +

⌈N/2−1⌉
∑

k=1

〈ŝk|~u0〉Btŝk

=

N/2
∑

k=0

〈ĉk|~u0〉λt
k ĉk +

⌈N/2−1⌉
∑

k=1

〈ŝk|~u0〉λt
kŝk, (1)

from which we can conclude that

lim
t→∞

~ut = 〈ĉ0|~u0〉ĉ0 =
1√
N

ĉ0 =
1

N
(1, . . . , 1),

since |λk| < 1 for k > 0. Also, as t → ∞, ut,s = 1/N + O(|λ1|t), since λ1 has the largest
norm of the k > 0 eigenvalues.

Unblurring

Returning to the problem of unblurring which motivated our diagonalization of B, we can
now see that when N is even, the null space is one dimensional, spanned by ĉN/2, while
when N is odd, there is no null space. In fact, equation (1) suggests a tactic for unblurring:
Given a blurred distribution ~u, if we know t, we can compute

~u′
0 =

⌈N/2−1⌉
∑

k=0

〈ĉk|~u〉λ−t
k ĉk +

⌈N/2−1⌉
∑

k=1

〈ŝk|~u〉λ−t
k ŝk,

which will be the same as the ~u0 from whence it came, except for any component ~u0 may
have had in the ĉN/2 subspace, which was completely erased by B.

This tactic not only fails to recover the ĉN/2 component of ~u0, but suffers from other flaws:
First, for large t, numerical imprecision will make it practically impossible to recover also
the components with small-but-not-quite-0 eigenvalues. Second, in practice one might not
know t. Developing unblurring algorithms based on more ideas than this simple tactic has
been an active area of research [2,3,4].
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