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In which we digress to discuss the non-primality of 1, thereby reviewing complex

numbers, and then introduce some basic notions of probability.

Digression

The question which arose as we constructed an algorithm for primality testing in the
previous lecture, namely whether or not 1 is a prime number, is interesting both historically
and mathematically [1,2]: According to Sir Thomas Heath, for the ancient Greeks, 1 was a
unit, not a number [3, p.69], and a fortiori, not a prime number. This conception held for
almost two millennia, but by the time Simon Stevin’s 1585 treatise on decimal notation
and arithmetic, De Thiende, was translated into English in 1608, many accepted “The sixt
Definition. A Whole number is either a unitie, or a compounded multitude of unities.” [4,
p.A3v]. Once 1 was a number, it could be considered a prime number, and for the next few
hundred years, some mathematicians did so (Christian Goldbach being a famous example
[5]), while others did not (Carl Friedrich Gauß counted 168 primes less than 1000 [6]).

In fact, it was Gauß in his second paper on quartic reciprocity [7] who introduced what
we now call the Gaussian integers—complex numbers of the form a+ bi, a, b ∈ Z—and the
modern ideas which led to 1 again being considered a unit, still a number, but not a prime
number: Recall that a commutative ring like the integers has two operations, addition and
multiplication. A unit in a ring has a multiplicative inverse in the ring (so for Z, 1 and
−1 are the only units). Two important features of prime numbers are that they are, in
modern terminology:

1. irreducible: not the product of two non-units;

2. prime: a|bc ⇒ a|b or a|c.
For integral domains (commutative rings in which the product of non-zero elements is
non-zero), prime implies irreducible. The converse, is not always true, however; only for
unique factorization domains (every element has a unique factorization as a product of
irreducible elements, as integers do, by the Fundamental Theorem of Arithmetic) does
irreducible imply prime. The following example is not a unique factorization domain:

EXAMPLE. Consider the set of quadratic integers Z[
√
−5] = {a + b

√
−5 | a, b ∈ Z} ⊂ C.

The norm on C defines a norm on Z[
√
−5]:

‖a+ b
√
−5‖ =

√

(a+ ib
√
5)(a− ib

√
5) =

√

a2 + 5b2.

Notice that since a, b ∈ Z, the possible values for the norm of an element in Z[
√
−5] are

rather sparse: {0, 1, 2,
√
5,
√
6, 3, . . .}. Recall that the norm of complez numbers satisfies
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‖wz‖ = ‖w‖ · ‖z‖. We can use this property to see that 1 and −1 are the only units in
Z[
√
−5], since they are the only elements with norm 1, and there are no fractional norm

values. Thus 2 ∈ Z[
√
−5] is irreducible, since again by the paucity of norm values, it cannot

be the product of two non-units. But 2 is not prime since 2|6 = (1+
√
−5)(1−

√
−5), each

of these factors has norm
√
6, and

√
6/2 is not a norm value, so 2 does not divide either

of them.

Probability

When we flip a coin, we describe the process as “it lands head up with probability p”,
where if p = 1/2 we say it is a fair coin. In principle, if we knew the initial position,
velocity, angular velocity, mass, position of landing surface, elastic properties of the coin
and the surface, gravitational field, air resistance, etc., we could compute how the coin
would land. In practice, we cannot know all these details, so we summarize our ignorance
by saying that the coin will land head up with probability p, i.e., a fraction p of the time.

DEFINITION. The set of outcomes or sample space is written Ω. (For a coin flip, Ω =
{head, tail}, which we will sometimes abbreviate {H,T}.) We will consider cases where Ω
is countable. An event is a subset of Ω.

DEFINITION. For countable Ω, a discrete probability distribution is a map Pr : Ω → R≥0,
with the property that

∑

ω∈Ω

Pr(ω) = 1.

This map extends to events:

Pr(A) =
∑

ω∈A

Pr(ω).
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EXAMPLE. For the coin flip we discussed above,
Pr(head) = p; Pr(tail) = 1− p. Now suppose we
flip a coin twice. Then Ω = {HH,HT,TH,TT}.
A general probability distribution on Ω is de-
fined by four nonnegative real numbers: Pr(HH),
Pr(HT), Pr(TH) and Pr(TT), summing to 1. Let

A = {HH,HT}
B = {HH,TH},

i.e., A is the event that the first flip is head up
and B is the event that the second flip is head
up.

DEFINITION. The conditional probability of event B, given event A, is

Pr(B | A) =
Pr(A ∩B)

Pr(A)
,
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which is the relative fraction of B within A.

DEFINITION. Events A and B are independent if Pr(B | A) = Pr(B), or equivalently, using
the definition of conditional probability above, if Pr(A ∩B) = Pr(A) Pr(B).

EXAMPLE. If events A and B in the example above are independent, then Pr(HH) = p,
Pr(HT) = p(1− p) = Pr(TH), and Pr(TT) = (1− p)2.
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