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Random Walk Algorithms: Lecture 5

David A. Meyer

In which Markov processes are defined and random walks introduced as examples

thereof.

Random walks on Z

The random variables we defined in the last lecture to be the sum of a sequence of random
“steps” are random walks.∗ More precisely, let Ω =

{

f1f2 . . . | fi ∈ {H,T}, i ∈ N
}

, and
for i ∈ N, define

Si(ω) =

{

+1 if fi = H;
−1 if fi = T,

where the events {fi = H} are mutually independent. Let Xt =
∑t

i=1
Si. Then a random

walk on Z is the sequence of random variables {Xt | t ∈ N}. This is an example of a
random process (stochastic process), namely a set of random variables indexed by some
set.

DEFINITION. A Markov process is a stochastic process {Xt | t ∈ N} such that

Pr(Xt+1 = xt+1 | Xt = xt, . . . , X1 = x1) = Pr(Xt+1 = xt+1 | Xt = xt),

i.e., the future depends only on the present, not on how we arrived at the present [4].

THEOREM. The random walk on Z is a Markov process.

Proof. Notice that from the definition, Xt+1 = Xt + St+1. Thus

Pr(Xt+1 = xt+1 | Xt = xt, . . . , X1 = x1)

= Pr(Xt + St+1 = xt+1 | Xt = xt, . . . , X1 = x1)

= Pr(St+1 = xt+1 − xt | St = xt − xt−1, . . . , S2 = x2 − x1, S1 = x1)

= Pr(St+1 = xt+1 − xt) by the independence of the Si

= Pr(Xt + St+1 = xt+1 | Xt = xt)

= Pr(Xt+1 = xt+1 | Xt = xt).

∗ This name was first used by Karl Pearson on July 27, 1905, when he asked for the probability density
function for the distance from the starting point after n steps in random directions in two dimensions
[1]. Lord Rayleigh pointed out two days later [2] that he had answered the question 25 years earlier [3].
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Transition probabilities

These conditional probabilities are those we have already seen:

Pr(Xt+1 = xt + 1 | Xt = xt) = p

Pr(Xt+1 = xt − 1 | Xt = xt) = 1− p.

More generally:

DEFINITION. Let S be a countable set and let {Xt | t ∈ N} be a Markov process with
Xt : Ω → S, the set of states. The conditional probabilities

pij(t) = Pr(Xt+1 = i | Xt = j)

are called the transition probabilities, and the arrays P (t) = {pij(t) | i, j ∈ S} are called
the transition matrices. Notice that

∑

i∈S pij(t) = 1, for all j ∈ S; this, together with
the nonnegativity of its entries, makes P (t) a stochastic matrix. We will mostly consider
cases in which the transition matrix does not depend on t; these are homogeneous Markov
processes.

For a random walk on Z, the transition probability matrix is

P =

































. . . −2 −1 0 1 2 . . .
...

−2
. . . 1− p

−1 0 1− p

0 p 0 1− p

1 p 0

2 p
. . .

...

































.

To define a random walk with a finite state space, consider the quotient space Z/ℓZ =
{[x] | x ∈ Z}, where the equivalence class [x] = {x + ℓZ} = {x + kℓ | k ∈ Z}. This is
the integers modulo ℓ, and a random walk on them can be defined with the same rule:
Xt+1 ≡ Xt + St+1 (mod ℓ). Then the transition probability matrix is

P =















[0] [1] . . . [ℓ− 2] [ℓ− 1]

[0] 0 1− p p
[1] p 0
...

. . .
. . .

. . .

[ℓ− 2] 0 1− p
[ℓ− 1] 1− p p 0















.
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