Random Walk Algorithms: Lecture 6

David A. Meyer

In which random walks are illustrated and evolved, and a conserved quantity is discovered, leading to consideration of a new Markov process comprised of two steps of a random walk.

Diagrams

Here are the two random walks we have seen so far, on \mathbb{Z} and on $\mathbb{Z} / \ell \mathbb{Z}$, with $\ell=10$:

The vertices in these diagrams represent states in S and the edges represent non-zero transition probabilities. To more completely capture the transitions we can label directed edges with the transition probabilities:

Time evolution

Since P is a matrix, it acts on $\mathbb{R}^{|S|}$ by matrix multiplication. Suppose $\vec{u} \in \mathbb{R}^{|S|}$ with $u_{x} \geq 0$ for all $x \in S$ and $\sum_{x} u_{x}=1$. Then \vec{u} is a probability distribution on S. For $S=\mathbb{Z} / \ell \mathbb{Z}$, consider $\vec{u}_{0}=(1,0, \ldots, 0)$, indexed as the transition probability matrix is above; this is the probability distribution with $\operatorname{Pr}(S=0)=1$ and $\operatorname{Pr}(S \neq 0)=0$. Then let

$$
\vec{u}_{1}=P \vec{u}_{0}=\left(\begin{array}{ccccc}
0 & 1-p & & & p \\
p & 0 & & & \\
& \ddots & \ddots & \ddots & \\
& & & 0 & 1-p \\
1-p & & & p & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
p \\
\vdots \\
0 \\
1-p
\end{array}\right)
$$

This is the probability distribution with $\operatorname{Pr}(S=1)=p ; \operatorname{Pr}(S=\ell-1)=1-p$; and $\operatorname{Pr}(S \notin\{1, \ell-1\})=0$, which is the probability distribution for the state after one step of the random walk. Similarly,

$$
\vec{u}_{2}=P \vec{u}_{1}=P \cdot P \vec{u}_{0}=P^{2} \vec{u}_{0}=\left(\begin{array}{c}
2 p(1-p) \\
0 \\
p^{2} \\
0 \\
\vdots \\
0 \\
(1-p)^{2} \\
0
\end{array}\right)
$$

which is the probability distribution over S after two steps of the random walk. The general result is:

THEOREM. Let \vec{u}_{0} be the probability distribution for the initial state X_{0} of a Markov process $\left\{X_{t} \mid t \in \mathbb{N}\right\}$. Then the probability distribution for X_{t} is

$$
\operatorname{Pr}\left(X_{t}=x\right)=\left(\vec{u}_{t}\right)_{x}=\left(P^{t} \vec{u}_{0}\right)_{x} .
$$

A conserved quantity

Notice that if ℓ is even, the probability distributions at time 0 and time 2 above have nonzero probabilities only at even numbered states, while at time 1 the probability distribution has nonzero probabilities only at odd numbered states. This is true more generally:

LEmma. Let $X_{0}=x_{0}$ for a random walk on \mathbb{Z} or on $\mathbb{Z} / \ell \mathbb{Z}$, ℓ even. Then $x_{t}+t(\bmod 2)$ is a "conserved quantity", i.e., it is constant.

Proof. Consider the change in one timestep: $x_{t}+t \mapsto\left(x_{t} \pm 1\right)+(t+1) \in\left\{x_{t}+t, x_{t}+t+2\right\}$. But these two values are the same modulo 2 , in \mathbb{Z} or $\mathbb{Z} / \ell \mathbb{Z}$, for even ℓ.

This suggests considering a new Markov process with states $S=\{x \in 2 \mathbb{Z}\}$, and transition matrix P^{2}, i.e., two steps of the random walk on \mathbb{Z} we have been considering heretofore:

	-4	-2	0	2	4
$\begin{gathered} \vdots \\ -4 \end{gathered}$		$(1-p)^{2}$			
-2		$2 p(1-p)$	$(1-p)^{2}$		
$P^{2}=0$		p^{2}	$2 p(1-p)$	$(1-p)^{2}$	
2			p^{2}	$2 p(1-p)$	
$\begin{aligned} & 4 \\ & \vdots \end{aligned}$				p^{2}	

We also will refer to such a Markov process, in which there are nonzero transition probabilities not only to adjacent states, but also to each state itself, as a random walk. Most generally, if there is some geometry on the space of states, and there are only nonzero transitions between nearby states, we will call the Markov process a random walk. In the case $p=1 / 2$, the transition probability matrix above becomes
which we call B for "binomial". Setting $\vec{u}_{0} \in \mathbb{R}^{2 \mathbb{Z}}$ to be 1 only in the $0^{\text {th }}$ component, the probability distribution after t steps of this new random walk is

$$
\vec{u}_{t}=B^{t} \vec{u}_{0} .
$$

We will refer to the original random walk as $\mathrm{RW}^{1}(p)$, and to the random walk with transition probability matrix P^{2} as $\mathrm{RW}^{2}(p)$.

