Random Walk Algorithms: Lecture 6 David A. Meyer

In which random walks are illustrated and evolved, and a conserved quantity is discovered, leading to consideration of a new Markov process comprised of two steps of a random walk.

Diagrams

Here are the two random walks we have seen so far, on \mathbb{Z} and on $\mathbb{Z}/\ell\mathbb{Z}$, with $\ell = 10$:

The vertices in these diagrams represent states in S and the edges represent non-zero transition probabilities. To more completely capture the transitions we can label directed edges with the transition probabilities:

Time evolution

Since P is a matrix, it acts on $\mathbb{R}^{|S|}$ by matrix multiplication. Suppose $\vec{u} \in \mathbb{R}^{|S|}$ with $u_x \ge 0$ for all $x \in S$ and $\sum_x u_x = 1$. Then \vec{u} is a probability distribution on S. For $S = \mathbb{Z}/\ell\mathbb{Z}$, consider $\vec{u}_0 = (1, 0, \dots, 0)$, indexed as the transition probability matrix is above; this is the probability distribution with $\Pr(S = 0) = 1$ and $\Pr(S \neq 0) = 0$. Then let

$$\vec{u}_1 = P\vec{u}_0 = \begin{pmatrix} 0 & 1-p & p \\ p & 0 & & \\ & \ddots & \ddots & \\ & & 0 & 1-p \\ 1-p & p & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ p \\ \vdots \\ 0 \\ 1-p \end{pmatrix}.$$

This is the probability distribution with $\Pr(S = 1) = p$; $\Pr(S = \ell - 1) = 1 - p$; and $\Pr(S \notin \{1, \ell - 1\}) = 0$, which is the probability distribution for the state after one step of the random walk. Similarly,

$$\vec{u}_2 = P\vec{u}_1 = P \cdot P\vec{u}_0 = P^2\vec{u}_0 = \begin{pmatrix} 2p(1-p) \\ 0 \\ p^2 \\ 0 \\ \vdots \\ 0 \\ (1-p)^2 \\ 0 \end{pmatrix}$$

,

which is the probability distribution over S after two steps of the random walk. The general result is:

THEOREM. Let \vec{u}_0 be the probability distribution for the initial state X_0 of a Markov process $\{X_t \mid t \in \mathbb{N}\}$. Then the probability distribution for X_t is

$$\Pr(X_t = x) = (\vec{u}_t)_x = (P^t \vec{u}_0)_x.$$

A conserved quantity

Notice that if ℓ is even, the probability distributions at time 0 and time 2 above have nonzero probabilities only at even numbered states, while at time 1 the probability distribution has nonzero probabilities only at odd numbered states. This is true more generally:

LEMMA. Let $X_0 = x_0$ for a random walk on \mathbb{Z} or on $\mathbb{Z}/\ell\mathbb{Z}$, ℓ even. Then $x_t + t \pmod{2}$ is a "conserved quantity", *i.e.*, it is constant.

Proof. Consider the change in one timestep: $x_t + t \mapsto (x_t \pm 1) + (t+1) \in \{x_t + t, x_t + t + 2\}$. But these two values are the same modulo 2, in \mathbb{Z} or $\mathbb{Z}/\ell\mathbb{Z}$, for even ℓ . This suggests considering a new Markov process with states $S = \{x \in 2\mathbb{Z}\}$, and transition matrix P^2 , *i.e.*, two steps of the random walk on \mathbb{Z} we have been considering heretofore:

We also will refer to such a Markov process, in which there are nonzero transition probabilities not only to adjacent states, but also to each state itself, as a random walk. Most generally, if there is some geometry on the space of states, and there are only nonzero transitions between nearby states, we will call the Markov process a random walk. In the case p = 1/2, the transition probability matrix above becomes

which we call B for "binomial". Setting $\vec{u}_0 \in \mathbb{R}^{2\mathbb{Z}}$ to be 1 only in the 0th component, the probability distribution after t steps of this new random walk is

$$\vec{u}_t = B^t \vec{u}_0.$$

We will refer to the original random walk as $RW^1(p)$, and to the random walk with transition probability matrix P^2 as $RW^2(p)$.