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Random Walk Algorithms: Lecture 6

David A. Meyer

In which random walks are illustrated and evolved, and a conserved quantity is

discovered, leading to consideration of a new Markov process comprised of two

steps of a random walk.

Diagrams

Here are the two random walks we have seen so far, on Z and on Z/ℓZ, with ℓ = 10:
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The vertices in these diagrams represent states in S and the edges represent non-zero
transition probabilities. To more completely capture the transitions we can label directed
edges with the transition probabilities:
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Time evolution

Since P is a matrix, it acts on R
|S| by matrix multiplication. Suppose ~u ∈ R

|S| with ux ≥ 0
for all x ∈ S and

∑

x
ux = 1. Then ~u is a probability distribution on S. For S = Z/ℓZ,

consider ~u0 = (1, 0, . . . , 0), indexed as the transition probability matrix is above; this is
the probability distribution with Pr(S = 0) = 1 and Pr(S 6= 0) = 0. Then let

~u1 = P~u0 =
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This is the probability distribution with Pr(S = 1) = p; Pr(S = ℓ − 1) = 1 − p; and
Pr(S 6∈ {1, ℓ− 1}) = 0, which is the probability distribution for the state after one step of
the random walk. Similarly,

~u2 = P~u1 = P · P~u0 = P 2~u0 =
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which is the probability distribution over S after two steps of the random walk. The
general result is:

THEOREM. Let ~u0 be the probability distribution for the initial state X0 of a Markov

process {Xt | t ∈ N}. Then the probability distribution for Xt is

Pr(Xt = x) = (~ut)x = (P t~u0)x.

A conserved quantity

Notice that if ℓ is even, the probability distributions at time 0 and time 2 above have
nonzero probabilities only at even numbered states, while at time 1 the probability distri-
bution has nonzero probabilities only at odd numbered states. This is true more generally:

LEMMA. Let X0 = x0 for a random walk on Z or on Z/ℓZ, ℓ even. Then xt + t (mod 2) is
a “conserved quantity”, i.e., it is constant.

Proof. Consider the change in one timestep: xt+t 7→ (xt±1)+(t+1) ∈ {xt+t, xt+t+2}.
But these two values are the same modulo 2, in Z or Z/ℓZ, for even ℓ.
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This suggests considering a new Markov process with states S = {x ∈ 2Z}, and transition
matrix P 2, i.e., two steps of the random walk on Z we have been considering heretofore:

P 2 =
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We also will refer to such a Markov process, in which there are nonzero transition proba-
bilities not only to adjacent states, but also to each state itself, as a random walk. Most
generally, if there is some geometry on the space of states, and there are only nonzero
transitions between nearby states, we will call the Markov process a random walk. In the
case p = 1/2, the transition probability matrix above becomes

B =
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which we call B for “binomial”. Setting ~u0 ∈ R
2Z to be 1 only in the 0th component, the

probability distribution after t steps of this new random walk is

~ut = Bt~u0.

We will refer to the original random walk as RW1(p), and to the random walk with tran-
sition probability matrix P 2 as RW2(p).
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