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In which random walks are illustrated and evolved, and a conserved quantity is
discovered, leading to consideration of a new Markov process comprised of two
steps of a random walk.

Diagrams

Here are the two random walks we have seen so far, on Z and on Z/¢Z, with £ = 10:

2 1 0 1 2
) X 0 1 8 9
p 0/ 0 1-p
—1 0 1—0p 1 P 0
0 D 0 1—p
8 0 1—-p

1 0

p 9\1-p p 0
2 D

The vertices in these diagrams represent states in S and the edges represent non-zero
transition probabilities. To more completely capture the transitions we can label directed
edges with the transition probabilities:
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Time evolution

Since P is a matrix, it acts on RIS by matrix multiplication. Suppose u € RS with Uy >0
for all z € S and ) u, = 1. Then @ is a probability distribution on S. For § = Z/{(Z,
consider #y = (1,0,...,0), indexed as the transition probability matrix is above; this is
the probability distribution with Pr(S = 0) =1 and Pr(S # 0) = 0. Then let
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This is the probability distribution with Pr(S = 1) = p; Pr(S = ¢ —-1) = 1 — p; and
Pr(S & {1,¢—1}) = 0, which is the probability distribution for the state after one step of
the random walk. Similarly,

2p(1 - p)
0

p2

0
0

(1—-p)?
0

which is the probability distribution over S after two steps of the random walk. The
general result is:

THEOREM. Let uy be the probability distribution for the initial state Xy of a Markov
process {X; | t € N}. Then the probability distribution for X, is

Pr(X, = ) = (@)s = (Pi0)s.

A conserved quantity

Notice that if ¢ is even, the probability distributions at time 0 and time 2 above have
nonzero probabilities only at even numbered states, while at time 1 the probability distri-
bution has nonzero probabilities only at odd numbered states. This is true more generally:

LEMMA. Let Xy = xq for a random walk on Z or on Z/VZ, { even. Then z; +t (mod 2) is
a “conserved quantity”, i.e., it is constant.

Proof. Consider the change in one timestep: x;+t — (2, 1)+ (t+1) € {z;+1t, s +t+2}.
But these two values are the same modulo 2, in Z or Z/{Z, for even /. ]
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This suggests considering a new Markov process with states S = {x € 2Z}, and transition
matrix P2, i.e., two steps of the random walk on Z we have been considering heretofore:
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We also will refer to such a Markov process, in which there are nonzero transition proba-
bilities not only to adjacent states, but also to each state itself, as a random walk. Most
generally, if there is some geometry on the space of states, and there are only nonzero
transitions between nearby states, we will call the Markov process a random walk. In the
case p = 1/2, the transition probability matrix above becomes
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which we call B for “binomial”. Setting @y € R*Z to be 1 only in the 0" component, the
probability distribution after ¢ steps of this new random walk is

"L_l:t - Bt'L_I:().

We will refer to the original random walk as RW?(p), and to the random walk with tran-
sition probability matrix P? as RW?(p).



