Random Walk Algorithms: Lecture 7

David A. Meyer

In which the heat equation with drift in one dimension is derived as a continuum limit of a random walk on $2 \mathbb{Z}$, and the advection equation is solved.

Difference equations

Having constructed a new random walk, $\mathrm{RW}^{2}(p)$, from two steps of the original random walk, $\operatorname{RW}^{1}(p)$, in the last lecture, we have an equation for the evolution of the probability distribution over $2 \mathbb{Z}$ during one timestep:

$$
\vec{u}_{t+1}=B \vec{u}_{t} .
$$

Written as an equation for the change in the probability distribution, this becomes:
where L is called the graph Laplacian and is defined as the adjacency matrix for a graph (the matrix A indexed by the vertices of a graph with $A_{i j}=1$ if there is an edge connected i and j and $A_{i j}=0$ otherwise) minus the diagonal matrix D with $D_{i i}$ being the degree of i : $L=A-D$. Written in terms of components, this becomes a set of coupled difference equations:

$$
u_{t+1, x}-u_{t, x}=\frac{1}{4}\left(u_{t, x+2}-2 u_{t, x}+u_{t, x-2}\right)
$$

For each t, $\left\{u_{t, x} \mid x \in 2 \mathbb{Z}\right\}$ is a probability distribution. We can imagine that it is a discrete set of values of a differentiable function. The two blue line segments shown not only approximate the function on the intervals $[x-\Delta x, x]$ and $[x, x+\Delta x]$, but their slopes also approximate the left and right derivatives at x.

Derivatives

Recall that the right and left derivatives of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ are defined as the limits:

$$
\begin{aligned}
f_{+}^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
f_{-}^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x)-f(x-\Delta x)}{\Delta x}
\end{aligned}
$$

If these two limits are equal, then the function is differentiable at x. Supposing f is also second differentiable at x, its second derivative is

$$
\begin{aligned}
f^{\prime \prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f^{\prime}(x+\Delta x)-f^{\prime}(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(f(x+\Delta x)-f(x)) / \Delta x-(f(x)-f(x-\Delta x)) / \Delta x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-2 f(x)+f(x-\Delta x)}{(\Delta x)^{2}}
\end{aligned}
$$

If the duration of each timestep is Δt, and the length of each spatial unit is Δx, we can rewrite the difference equation above as:

$$
u_{t+\Delta t, x}-u_{t, x}=\frac{1}{4}\left(u_{t, x+\Delta x}-2 u_{t, x}+u_{t, x-\Delta x}\right)
$$

whence the definitions of derivatives suggest setting $\Delta t=(\Delta x)^{2} /(4 \alpha), 0<\alpha \in \mathbb{R}$, dividing, and taking the limit as $\Delta t \rightarrow 0$:

$$
\begin{aligned}
\lim _{\Delta t \rightarrow 0} \frac{u_{t+\Delta t, x}-u_{t, x}}{\Delta t} & =\lim _{\Delta x \rightarrow 0} \frac{1}{4} \frac{u_{t, x+\Delta x}-2 u_{t, x}+u_{t, x-\Delta x}}{(\Delta x)^{2} /(4 \alpha)} \\
\Rightarrow \frac{\partial u(t, x)}{\partial t} & =\alpha \frac{\partial^{2} u(t, x)}{\partial x^{2}}
\end{aligned}
$$

This is the diffusion (or heat) equation.

Drift

It is only for $p=1 / 2$ that two steps of $\mathrm{RW}^{1}(p)$ are described by the transition matrix B; otherwise, let $p=1 / 2+\epsilon$, for $-1 / 2 \leq \epsilon \leq 1 / 2$. Then the elements in the two step transition probability matrix P^{2} are:

$$
\begin{aligned}
p^{2}=\left(\frac{1}{2}+\epsilon\right)^{2} & =\frac{1}{4}+\epsilon^{2}+2 \epsilon \\
2 p(1-p)=2\left(\frac{1}{2}+\epsilon\right)\left(\frac{1}{2}-\epsilon\right) & =\frac{1}{2}-2 \epsilon^{2} \\
(1-p)^{2}=\left(\frac{1}{2}-\epsilon\right)^{2} & =\frac{1}{4}+\epsilon^{2}-2 \epsilon,
\end{aligned}
$$

so the difference equations become

$$
u_{t+1, x}-u_{t, x}=\left(\frac{1}{4}+\epsilon^{2}\right)\left(u_{t, x+2}-2 u_{t, x}+u_{t, x-2}\right)-2 \epsilon\left(u_{t, x+2}-u_{t, x-2}\right)
$$

As before we want to divide the left hand side by Δt, and the first term on the right hand side by $\left(\frac{1}{4}+\epsilon^{2}\right)(\Delta x)^{2} / \alpha$. For the last term to become a derivative in the limit we must divide it by $2 \Delta x$ (since it contains $u_{t, x+\Delta x}-u_{t, x-\Delta x}$, and to clean up the coefficient in front of the derivative we will divide by $2 \epsilon \cdot 2 \Delta x / \beta$. Thus we must set

$$
\Delta t=\left(\frac{1}{4}+\epsilon^{2}\right) \frac{1}{\alpha}(\Delta x)^{2}=\frac{4 \epsilon}{\beta} \Delta x
$$

(which means β has the same sign as ϵ) divide by this quantity, and take the limit as it goes to 0 . (Notice that this means that $\epsilon \rightarrow 0$.) The result is the heat equation with drift:

$$
\frac{\partial u(t, x)}{\partial t}=\alpha \frac{\partial^{2} u(t, x)}{\partial x^{2}}-\beta \frac{\partial u(t, x)}{\partial x}
$$

The advection equation

Setting $\alpha=0$ in the heat equation with drift gives the advection equation:

$$
\frac{\partial u(t, x)}{\partial t}=-\beta \frac{\partial u(t, x)}{\partial x}
$$

If we define new variables $(\tau, \chi)=(t, x-\beta t)$, then

$$
\frac{\partial u}{\partial \tau}=\frac{\partial u}{\partial t} \frac{\partial t}{\partial \tau}+\frac{\partial u}{\partial x} \frac{\partial x}{\partial \tau}=\frac{\partial u}{\partial t}+\beta \frac{\partial u}{\partial x}=0
$$

using the chain rule, and then the advection equation. Thus

$$
u(t, x)=u(t(0, \chi), x(0, \chi))=u(0, \chi)=u(0, x-\beta t)
$$

so whatever the initial function $u(0, x)$ is, at time t it is merely shifted by βt.

