168A MIDTERM

In problem 1, write pseudocode for your algorithms; you can also describe in words what they are doing. In problems 2 and 3 , showing your work in addition to the final answer might earn some partial credit in case the latter is not exactly right.

1. a. [15 points] Construct an algorithm to select a point uniformly at random from the disk of radius 1 centered at the origin. Assume you have access to a random number generator random() that returns a uniformly random number in the interval $[0,1]$, e.g., $x \leftarrow \operatorname{random}()$ means that $x \in[0,1]$, sampled from the constant probability density function.
b. [20 points] Now construct an algorithm to approximate the area of a disk of radius 1 , i.e., to approximate π. Design your algorithm so that it has probability at least $2 / 3$ of giving an estimate for π that is correct to one decimal place, i.e., it is within the interval $[\pi-0.05, \pi+0.05]$.
Hint: For large n and fixed p, you can approximate a binomial distribution by a normal distribution with the same mean and variance, i.e., $\operatorname{Binomial}(n, p) \approx$ $\mathcal{N}(n p, n p(1-p))$.
2. Consider a random walk $\left\{X_{t} \in \mathbb{Z} \mid t \in \mathbb{N}\right\}$ with transition probabilities

$$
P_{x y}= \begin{cases}1 / 2 & \text { if }|x-y|=1 \\ 0 & \text { otherwise }\end{cases}
$$

and initial state $X_{0}=0$.
a. [15 points] Suppose $X_{4}=2$. Draw all the paths in (x, t) space that the walk could follow.
Hint: Each path is like the path that you plotted in the first homework assignment.
b. [20 points] Compute the probability distributions for X_{1}, X_{2}, and X_{3} given that $X_{0}=0$ and $X_{4}=2$, i.e., compute $\operatorname{Pr}\left(X_{t}=x \mid X_{0}=0, X_{4}=2\right)$ for $t \in\{1,2,3\}$.
3. a. [15 points] Write the transition probability matrix P for a random walk on $S=$ $\{1,2,3,4,5,6\} \subset \mathbb{N}$ with transition probabilities:

$$
\operatorname{Pr}\left(X_{t+1}=x \mid X_{t}=y\right)= \begin{cases}1 / 2 & \text { if } x=y \\ 1 / 2 & \text { if } y \in\{1,6\} \text { and }|x-y|=1 \\ 1 / 4 & \text { if } y \notin\{1,6\} \text { and }|x-y|=1 \\ 0 & \text { otherwise }\end{cases}
$$

b. [15 points] Find a probability distribution on S that is unchanged by the evolution.

