168A PRACTICE MIDTERM

In problem 1, write pseudocode for your algorithm; you can also describe in words what it is doing. In problems 2 and 3 , showing your work in addition to the final answer might earn some partial credit in case the latter is not exactly right.

1. Construct a randomized algorithm to approximate the integral of an arbitrary function $f:[0,1] \rightarrow[0,1]$. Assume that the function is provided as a subroutine which returns $f(x)$ when passed argument x; also assume you have access to a random number generator random() that returns a uniformly random number in the interval $[0,1]$, e.g., $x \leftarrow \operatorname{random}()$ means that $x \in[0,1]$, sampled from the constant probability density function. Design your algorithm so that it has probability at least $2 / 3$ of giving an estimate for the integral that is correct to one decimal place.
2. Consider a random walk $\left\{X_{t} \in \mathbb{Z} \mid t \in \mathbb{N}\right\}$ with transition probabilities

$$
P_{x y}= \begin{cases}1 / 2 & \text { if }|x-y|=1 \\ 0 & \text { otherwise }\end{cases}
$$

and initial state $X_{0}=0$.
a. Suppose $X_{2}=0$. What is the probability that $X_{t} \neq 0$ for any $0<t<2$, i.e., that given the random walk has returned to 0 at $t=2$, that this is the first return?
b. Suppose $X_{4}=0$. What is the probability that $X_{t} \neq 0$ for any $0<t<4$, i.e., that given the random walk has returned to 0 at $t=4$, that this is the first return?
c. Suppose $X_{6}=0$. What is the probability that $X_{t} \neq 0$ for any $0<t<6$, i.e., that given the random walk has returned to 0 at $t=6$, that this is the first return?
3. a. Let G be a graph with 4 vertices and adjacency matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

What is the transition probability matrix for the random walk on G that for each vertex v has equal transition probability to each vertex connected to v, and transition probability 0 to every other vertex?
b. Find a probability distribution on the vertices of G that is unchanged by the random walk evolution defined in problem 3.a.

