## 168A PRACTICE MIDTERM SOLUTIONS

In problem 1, write pseudocode for your algorithm; you can also describe in words what it is doing. In problems 2 and 3 , showing your work in addition to the final answer might earn some partial credit in case the latter is not exactly right.

1. Construct a randomized algorithm to approximate the integral of an arbitrary function $f:[0,1] \rightarrow[0,1]$. Assume that the function is provided as a subroutine which returns $f(x)$ when passed argument $x$; also assume you have access to a random number generator random() that returns a uniformly random number in the interval $[0,1]$, e.g., $x \leftarrow \operatorname{random}()$ means that $x \in[0,1]$, sampled from the constant probability density function. Design your algorithm so that it has probability at least $2 / 3$ of giving an estimate for the integral that is correct to one decimal place.

The unknown function $f$ might look like this plot; in any case our task is to compute its integral, namely the area $A$ below its curve. If we sample points uniformly at random, independently, in the square region $[0,1] \times[0,1]$ the probability that each lies below the curve is $A$. So if we sample $N$ points, the number $C$ that lie below the curve is a binomial random variable $C \sim \operatorname{Binomial}(N, A)$. The expectation value of $C$ is $\mathrm{E}[C]=N A$, whence $\mathrm{E}[C / N]=A$. The variance in this estimator is


$$
\operatorname{Var}[C / N]=\operatorname{Var}[C] / N^{2}=A(1-A) / N
$$

so its standard deviation is $\sqrt{A(1-A) / N}$. Since the binomial distribution is approximated by a normal distribution, and slightly more than $2 / 3$ of the probability is within 1 standard deviation of the mean in a normal distribution, we need to have

$$
\sqrt{A(1-A) / N}<0.05=\epsilon, \quad \text { which implies } \quad \sqrt{N}>20 \sqrt{A(1-A)}
$$

The right hand side of this inequality is largest when $A=1 / 2$, so we choose $N>100$. Here is pseudocode for this algorithm:

```
input: \(0<\epsilon ; f:[0,1] \rightarrow[0,1]\).
output: \(\int_{0}^{1} f(x) \mathrm{d} x\).
count \(\leftarrow 0\)
repeat \(N=\left\lceil 1 /\left(4 \epsilon^{2}\right)\right\rceil\) times:
    \(x \leftarrow \operatorname{random}()\)
    \(y \leftarrow \operatorname{random}()\)
    if \(f(x)<y\), count \(\leftarrow\) count +1
return count \(/ N\)
```


## 168A PRACTICE MIDTERM SOLUTIONS

2. Consider a random walk $\left\{X_{t} \in \mathbb{Z} \mid t \in \mathbb{N}\right\}$ with transition probabilities

$$
P_{x y}= \begin{cases}1 / 2 & \text { if }|x-y|=1 \\ 0 & \text { otherwise }\end{cases}
$$

and initial state $X_{0}=0$.
a. Suppose $X_{2}=0$. What is the probability that $X_{t} \neq 0$ for any $0<t<2$, i.e., that given the random walk has returned to 0 at $t=2$, that this is the first return?
Since $X_{1}$ must be odd, it is definitely not 0 , so the probability is 1 .
b. Suppose $X_{4}=0$. What is the probability that $X_{t} \neq 0$ for any $0<t<4$, i.e., that given the random walk has returned to 0 at $t=4$, that this is the first return?
Since $X_{4}=0$ the random walk must take two positive steps and two negative steps. There are $\binom{4}{2}=6$ such paths, exactly 2 of which $(++--$ and --++$)$ have $t=4$ as their first return time, so the probability is $2 / 6=1 / 3$.
c. Suppose $X_{6}=0$. What is the probability that $X_{t} \neq 0$ for any $0<t<6$, i.e., that given the random walk has returned to 0 at $t=6$, that this is the first return?
Since $X_{6}=0$ the random walk must take three positive steps and three negative steps. There are $\binom{6}{6}=20$ such paths, exactly 4 of which $(+++---,++-+--$, and the reverses of each of these) have $t=6$ as their first return time, so the probability is $4 / 20=1 / 5$.
3. a. Let $G$ be a graph with 4 vertices and adjacency matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

What is the transition probability matrix for the random walk on $G$ that for each vertex $v$ has equal transition probability to each vertex connected to $v$, and transition probability 0 to every other vertex?
The nonzero transition probabilities are in the same places as the 1 s in $A$, but each column must sum to 1 ; thus

$$
P=\left(\begin{array}{cccc}
0 & 1 / 3 & 0 & 0 \\
1 & 0 & 1 / 2 & 1 / 2 \\
0 & 1 / 3 & 0 & 1 / 2 \\
0 & 1 / 3 & 1 / 2 & 0
\end{array}\right)
$$

b. Find a probability distribution on the vertices of $G$ that is unchanged by the random walk evolution defined in problem 3.a.
Suppose the probability at vertex 1 is $p$. Then, since it all transfers to vertex 2 , and $1 / 3$ of vertex 2 's probability transfers to vertex 1 , there must be $3 p$ at state 2 . Similarly, there must be $2 p$ at vertices 3 and 4 . Since $p+3 p+2 p+2 p=1, p=1 / 8$, and the probability distribution is $(1,3,2,2) / 8$.

