## 168A MIDTERM SOLUTIONS

In problem 1, write pseudocode for your algorithms; you can also describe in words what they are doing. In problems 2 and 3 , showing your work in addition to the final answer might earn some partial credit in case the latter is not exactly right.

1. a. [15 points] Construct an algorithm to select a point uniformly at random from the disk of radius 1 centered at the origin. Assume you have access to a random number generator random() that returns a uniformly random number in the interval $[0,1]$, e.g., $x \leftarrow \operatorname{random}()$ means that $x \in[0,1]$, sampled from the constant probability density function.
One approach is to sample points uniformly from the square $[-1,1] \times[-1,1]$ which circumscribes the disk, until we find one that lies in the disk:

$$
\begin{aligned}
& \text { found } \leftarrow \text { False } \\
& \text { while not found: } \\
& \qquad x \leftarrow 2 * \operatorname{random}()-1 \\
& \quad y \leftarrow 2 * \operatorname{random}()-1 \\
& \text { if } x^{2}+y^{2} \leq 1 \text {, found } \leftarrow \text { True } \\
& \text { return }(x, y)
\end{aligned}
$$

b. [20 points] Now construct an algorithm to approximate the area of a disk of radius 1 , i.e., to approximate $\pi$. Design your algorithm so that it has probability at least $2 / 3$ of giving an estimate for $\pi$ that is correct to one decimal place, i.e., it is within the interval $[\pi-0.05, \pi+0.05]$.
Hint: For large $n$ and fixed $p$, you can approximate a binomial distribution by a normal distribution with the same mean and variance, i.e., $\operatorname{Binomial}(n, p) \approx$ $\mathcal{N}(n p, n p(1-p))$.
If we sample points uniformly at random, independently, in the square region $[-1,1] \times$ $[-1,1]$ the probability that each lies in the disk is $\pi / 4$. So if we sample $N$ points, the number $C$ that lie in the disk is a binomial random variable $C \sim \operatorname{Binomial}(N, \pi / 4)$. The expectation value of $C$ is $\mathrm{E}[C]=N \pi / 4$, whence $\mathrm{E}[4 C / N]=\pi$. The variance in this estimator is

$$
\operatorname{Var}\left[\frac{4 C}{N}\right]=\frac{16}{N^{2}} \operatorname{Var}[C]=\frac{16}{N} \frac{\pi}{4}\left(1-\frac{\pi}{4}\right)=\frac{\pi(4-\pi)}{N}
$$

so its standard deviation is $\sqrt{\pi(4-\pi) / N}$. Since the binomial distribution is approximated by a normal distribution, and slightly more than $2 / 3$ of the probability is within 1 standard deviation of the mean in a normal distribution, we need to have

$$
\sqrt{\pi(4-\pi) / N}<0.05=\epsilon, \quad \text { which implies } \quad \sqrt{N}>20 \sqrt{\pi(4-\pi)} .
$$

Even if we did not know $\pi$, since the disk is contained in the square we know it is less than 4 ; since the largest $\pi(4-\pi)$ could be is 4 (if $\pi$ were 2 ), if we choose

## 168A MIDTERM SOLUTIONS

$N=400 \cdot 4=1600$, the estimate will be sufficiently accurate. Here is pseudocode for this algorithm:
input: $0<\epsilon$.
output: $\pi$.
count $\leftarrow 0$
repeat $N=\left\lceil 4 / \epsilon^{2}\right\rceil$ times:
$x \leftarrow 2 * \operatorname{random}()-1$
$y \leftarrow 2 * \operatorname{random}()-1$
if $x^{2}+y^{2} \leq 1$, count $\leftarrow$ count +1
return $4 *$ count $/ N$
2. Consider a random walk $\left\{X_{t} \in \mathbb{Z} \mid t \in \mathbb{N}\right\}$ with transition probabilities

$$
P_{x y}= \begin{cases}1 / 2 & \text { if }|x-y|=1 \\ 0 & \text { otherwise }\end{cases}
$$

and initial state $X_{0}=0$.
a. [15 points] Suppose $X_{4}=2$. Draw all the paths in $(x, t)$ space that the walk could follow.
Hint: Each path is like the path that you plotted in the first homework assignment.




b. [20 points] Compute the probability distributions for $X_{1}, X_{2}$, and $X_{3}$ given that $X_{0}=0$ and $X_{4}=2$, i.e., compute $\operatorname{Pr}\left(X_{t}=x \mid X_{0}=0, X_{4}=2\right)$ for $t \in\{1,2,3\}$.
Each of the paths shown above has the same probability, $1 / 4$, conditional on $X_{0}=0$ and $X_{4}=2$. Restricting them to time $t$ gives the requested probability distributions:

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{1}=x \mid X_{0}=0, X_{4}=2\right)= \begin{cases}1 / 4 & \text { if } x=-1 \\
3 / 4 & \text { if } x=1 \\
0 & \text { otherwise }\end{cases} \\
& \operatorname{Pr}\left(X_{2}=x \mid X_{0}=0, X_{4}=2\right)= \begin{cases}1 / 2 & \text { if } x=0 \\
1 / 2 & \text { if } x=2 \\
0 & \text { otherwise }\end{cases} \\
& \operatorname{Pr}\left(X_{3}=x \mid X_{0}=0, X_{4}=2\right)= \begin{cases}3 / 4 & \text { if } x=1 ; \\
1 / 4 & \text { if } x=3 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

## 168A MIDTERM SOLUTIONS

3. a. [15 points] Write the transition probability matrix $P$ for a random walk on $S=$ $\{1,2,3,4,5,6\} \subset \mathbb{N}$ with transition probabilities:

$$
\begin{gathered}
\operatorname{Pr}\left(X_{t+1}=x \mid X_{t}=y\right)= \begin{cases}1 / 2 & \text { if } x=y ; \\
1 / 2 & \text { if } y \in\{1,6\} \text { and }|x-y|=1 ; \\
1 / 4 & \text { if } y \notin\{1,6\} \text { and }|x-y|=1 ; \\
0 & \text { otherwise. }\end{cases} \\
P=\frac{1}{4}\left(\begin{array}{lllll}
2 & 1 & \\
2 & 2 & 1 & & \\
& 1 & 2 & 1 & \\
& & 1 & 2 & 1 \\
\\
& & 1 & 2 & 2 \\
& & & 1 & 2
\end{array}\right) .
\end{gathered}
$$

b. [15 points] Find a probability distribution on $S$ that is unchanged by the evolution. We want $v \in \mathbb{R}^{6}$ such that $P v=v$, i.e., $(P-I) v=0$. Notice that $P$ is symmetric under the exchange of states $s$ and $7-s$, so $v=(a, b, c, c, b, a)$. Inserting this into the equation gives $-2 a+b=0$, so $b=2 a$. Also, $2 a-2 b+c=0$, so $c=2 a$. Thus $v=(a, 2 a, 2 a, 2 a, 2 a, a)$. Since $v$ is a probability distribution, its elements must sum to 1 , which means $a=1 / 10$, and $v=(1,2,2,2,2,1) / 10$.

