Assigned Problems (write up full solutions and hand in):

Section 3.2 #24
Section 3.3. #5, 6
Section 3.4 #2, 4, 6

Problems not from the text (also to be handed in)

A. Let G be a group and let a and b be elements of G which have finite order. For convenience, define $m = o(a) < \infty$ and $n = o(b) < \infty$. Suppose that a and b commute, that is, $ab = ba$. Let $k = o(ab)$ be the order of the element ab. The point of this problem is to study how the order of ab is related to the order of a and the order of b.

(a). Prove that k is finite and in fact that k divides $\text{lcm}(m, n)$.

(b). Show that if $\gcd(m, n) = 1$, then $k = mn = \text{lcm}(m, n)$.
(c). Give an example showing that k can be smaller than $\text{lcm}(m, n)$ in general.

B. If two elements a and b of finite order do not commute, the result of the previous exercise fails completely; it is even possible for ab to have infinite order. In this exercise you see an example of this.

Let G be the group of all permutations of the infinite set $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \}$. Remember that G is the set of all bijective functions $f : \mathbb{Z} \to \mathbb{Z}$ and that the operation in G is composition of functions, i.e. fg means $f \circ g$. Let $f, g \in G$ be the functions given by the formulas $f(x) = -x$ and $g(x) = 1 - x$ (you can take as given that these really are bijective functions and thus belong to G.) Prove that in the group G, $o(f) = 2$ and $o(g) = 2$, but that $o(fg) = \infty$.

C. In any group G, if H and K are subsets of G then we define $HK = \{hk | h \in H, k \in K \}$.

(a). Prove that if H and K are subgroups of G, then HK is a subgroup of G if and only if $HK = KH$. (do not use Proposition 3.3.2 in the text).

(b). Use the result of (a) to give an alternative proof of Proposition 3.3.2 in the text: namely, if H and K are subgroups of G and $h^{-1}kh \in K$ for all $h \in H$ and $k \in K$, then HK is a subgroup of G.

Optional problems (handing in not required)

(None this week)