1. Recall that the center of a group G is $Z = Z(G) = \{a \in G | ab = ba \text{ for all } b \in G\}$, which is always a normal subgroup of G.

Prove that if G/Z is a cyclic group, then $G = Z$ and G is abelian.

2. Suppose that H and K are normal subgroups of G such that $H \cap K = \{e\}$. Show that $hk = kh$ for all $h \in H, k \in K$.

3. Recall that given a subset X of a group G, the subgroup of G generated by X, written $\langle X \rangle$, is the unique smallest subgroup of G containing X (equivalently, the intersection of all subgroups of G which contain X). The group G is finitely generated if $G = \langle X \rangle$ for a finite set X.

Prove that $(\mathbb{Q}, +)$ is not finitely generated, where \mathbb{Q} is the rational numbers.

4. Consider the dihedral group D_{2n} of order $2n$ for some $n \geq 3$. We defined this in class as a subgroup of invertible 2×2 real matrices, but in this problem it is most convenient to work with its presentation as follows: D_{2n} is generated by elements a, b such that $D_{2n} = \{a^i b^j | 0 \leq i \leq n - 1, 0 \leq j \leq 1\}$, where $a^n = 1, b^2 = 1, ba^i = a^{-i}b$ for all i. (We will consider presentations more formally later). (Note: a previously posted version of this problem allowed $n \geq 2$, but part (b) below doesn’t work for $n = 2$, so just consider $n \geq 3$.)

(a). Find the center Z of D_{2n} for each $n \geq 3$.
(b). Show that if n is even, then $D_{2n}/Z \cong D_n$.

5. Recall the definition of the direct product $G_1 \times G_2$ of two groups G_1 and G_2 (Section 1.1 of the text).

Let H and K be normal subgroups of a group G such that $G = HK$. Prove that $G/(H \cap K) \cong (G/H) \times (G/K)$.

6. Let G be a finite group with normal subgroup N. Let $H \leq G$ be another subgroup of G.

Show that if $|H|$ and $|G : N|$ are relatively prime, then $H \subseteq N$. Conclude that if $|N|$ and $|G : N|$ are relatively prime, then N is the unique subgroup of G of order $|N|$. (Hint: consider HN.)
7. Let \(p \) be a prime and let \(G \) be a group of order \(p^a m \), where \(\gcd(m, p) = 1 \). Let \(P \) be a subgroup of \(G \) of order \(p^a \) (later we will call \(P \) a Sylow \(p \)-subgroup). Let \(N \) be any normal subgroup of \(G \), say of order \(|N| = p^b n \) where \(\gcd(n, p) = 1 \). Show that \(|P \cap N| = p^b \) and \(|PN/N| = p^{a-b} \).

8. (a). Suppose that \(G \) is a group. Show that one cannot have \(G = H_1 \cup H_2 \), where each \(H_i \) is a proper subgroup of \(G \) (that is, not equal to all of \(G \)).

(b). Suppose that \(G \) is a finite group and that \(G = H_1 \cup H_2 \cup H_3 \), where each \(H_i \) is a proper subgroup of \(G \). Show that \(|G : H_i| = 2 \) for all \(i \). Also, find an example where this actually happens. (Hint: first show by counting that at least one of the subgroups, say \(H_1 \), has index 2. Then prove that this forces \(H_1H_i = G \) and \(|H_i : H_1 \cap H_i| = 2 \), for \(i = 2, 3 \).)