Math 200a Fall 2014 Homework 3

Due Friday 10/31/2014 by 3pm in homework box in basement

1. Let \(n \geq 5 \).
 (a). Prove that the only normal subgroups of \(S_n \) are \(\{e\}, A_n \), and \(S_n \).
 (b). Prove that if \(H \leq S_n \) with \(|S_n : H| = d \), where \(1 < d < n \), then \(H = A_n \).

2. Let \(|G| = pqr \) for some distinct primes \(p, q, r \) with \(p < q < r \).
 Prove that \(G \) has a normal Sylow subgroup of order \(p \), \(q \), or \(r \).

3. Let \(|G| = 595 = (5)(7)(17) \). Show that all Sylow subgroups of \(G \) are normal.

4. Suppose that \(|G| = 231 = (3)(7)(11) \). Show that \(G \) has a normal Sylow 11-subgroup \(P \) and prove that \(P \subseteq Z(G) \). (Hint: If \(Q \) is a Sylow 7-subgroup and \(R \) is a Sylow 3-subgroup, show that \(PQ \) and \(PR \) are Abelian).

5. Let \(G \) be a finite group with subgroups \(P \leq H \leq K \leq G \), where \(P \) is a Sylow \(p \)-subgroup of \(G \).
 (a). Prove that if \(P \leq H \) and \(H \leq K \), then \(P \leq K \).
 (b). Prove that \(N_G(N_G(P)) = N_G(P) \).

6. Let \(P \) be a Sylow \(p \)-subgroup of the finite group \(G \). Let \(H \leq G \) be a subgroup of \(G \).
 (a). Show that there exists \(g \in G \) such that \(gPg^{-1} \cap H \) is a Sylow \(p \)-subgroup of \(H \).
 (b). Suppose that \(H \leq G \). Prove that \(P \cap H \) is a Sylow \(p \)-subgroup of \(H \).
 (c). Suppose that \(P \leq G \). Prove that \(P \cap H \) is a Sylow \(p \)-subgroup of \(H \), and is the unique Sylow \(p \)-subgroup of \(H \).
 (d). If neither \(P \) nor \(H \) is normal in \(G \), show that \(P \cap H \) need not be a Sylow \(p \)-subgroup of \(H \) in general.

7. Let \(|G| = p(p + 1) \) where \(p \) is prime. Show that \(G \) has either a normal subgroup of order \(p \) or a normal subgroup of order \(p + 1 \). (Hint: If \(n_p > 1 \), choose \(x \in G \) of order not equal to 1 or \(p \). Study the conjugacy class of \(x \) and \(|C_G(x)| \)).