Math 200a Fall 2021 Homework 5

Due Friday 10/29/2021 in class

1. Let p be a prime. Let $G=S_{p}$. Let P be a Sylow p-subgroup of G. Show that $\left|N_{G}(P)\right|=p(p-1)$.
2. Consider S_{n} for $n \geq 5$.
(a) Show that the only normal subgroups of S_{n} are $\{1\}, A_{n}$, and S_{n}.
(b) Let H be a subgroup of S_{n} with $1<d=\left|S_{n}: H\right|<n$. Then $d=2$ and $H=A_{n}$.
3. Suppose that G is a finite group with $|G|=\left(2^{k}\right)(m)$ where m is odd. Suppose that G has a cyclic Sylow 2-subgroup. Show that G has a unique subgroup H with $|H|=m$.
4. Suppose that G is a simple group with $|G|=60$.
(a) Show that $n_{3}=10$ and $n_{5}=6$.
(b) Suppose that $n_{2}=15$. Show that there are Sylow 2-subgroups P and Q with $|P \cap Q|=2$. Show that $\left|N_{G}(P \cap Q)\right|=12$.
(c) If $n_{2}=5$ then G has a subgroup H with $|H|=12$ in this case as well.
(d) There is an injective homomorphism of groups $\phi: G \rightarrow S_{5}$.
(e) Conclude that $G \cong A_{5}$.
(f) In retrospect, is $n_{2}=5$ or is $n_{2}=15$?
5. Let σ be an n-cycle in S_{n}. Show that the conjugacy class of σ has $(n-1)$! elements and that $C_{S_{n}}(\sigma)=\langle\sigma\rangle$.
6. Let $n \geq 3$. In class and the course notes, we showed that if $\sigma \in A_{n}$, then the conjugacy class $\mathrm{Cl}_{A_{n}}(\sigma)=\mathrm{Cl}_{S_{n}}(\sigma)$ is equal to the full S_{n}-conjugacy class, or else $\mathrm{Cl}_{A_{n}}(\sigma)$ has precisely half of the elements in $\mathrm{Cl}_{S_{n}}(\sigma)$. Moreover, we saw that the first case happens when the centralizers satisfy $\left|C_{A_{n}}(\sigma)\right|=\left|C_{S_{n}}(\sigma)\right| / 2$, while the second case happens when $C_{A_{n}}(\sigma)=C_{S_{n}}(\sigma)$.

Suppose that the disjoint cycle form of σ (with 1-cycles included) consists of cycles of lengths $k_{1}, k_{2}, \ldots, k_{d}$. Show that the second case above happens precisely when the k_{i} are distinct odd integers.
7. Let H and K be groups and let $G=H \times K$. Identify H and K with subgroups of G as usual.
(a) Suppose that D is a subgroup of G such that $D \cap H=D \cap K=\{1\}$. Prove that there are subgroups $H^{\prime} \leq H$ and $K^{\prime} \leq K$ and an isomorphism of groups $\phi: H^{\prime} \rightarrow K^{\prime}$ such that $D=\left\{(h, \phi(h)) \mid h \in H^{\prime}\right\}$. In other words, D is the graph of a partial isomorphism from H to K.
(b) If D is as in part (a), show that $D \unlhd G$ if and only if $H^{\prime} \leq Z(H)$ and $K^{\prime} \leq Z(K)$.
(c) Suppose that H and K are nonabelian simple groups. Show that the only normal subgroups of G are $\{1\}, H, K$, and G.

