
MATH 200A FALL 2021 MIDTERM SOLUTIONS

1 (15 pts).

(a) If P is a Sylow p-subgroup of a finite group G, prove that NG(NG(P )) = NG(P ). (This

was a homework exercise— I want you to reprove it).

Solution. Note that P ⊴ NG(P ) by definition. Also, since |P | is the maximum power

of p dividing |G|, |P | is also the maximum power of p dividing |NG(P )|. So P is a Sylow

p-subgroup of NG(P ). Since P ⊴ NG(P ), we know that this means that P is the unique

Sylow p-subgroup of NG(P ), and in particular P charNG(P ). Now NG(P ) ⊴ NG(NG(P )),

again by definition. Since

P charNG(P )⊴NG(NG(P )),

by a result from class we have P ⊴NG(NG(P )). Since NG(P ) is the unique largest subgroup

of G inside of which P is normal, NG(NG(P )) ⊆ NG(P ). The reverse inclusion holds by

definition, so NG(P ) = NG(NG(P )).

(b) Let p be an odd prime. Prove that a groupG of order 4p has a normal Sylow p-subgroup

if and only if G has a subgroup of order 2p.

Solution. Suppose first that P is a normal Sylow p-subgroup of G. By Cauchy’s theorem,

G has an element of order 2, say x, and so H = ⟨x⟩ is a subgroup of order 2. Now |P ∩H|
divides both 2 and p by Lagrange, and so is 1. It follows that |HP | = |H||P |/|H ∩ P | = 2p.

Moreover, since P ⊴G, HP is a subgroup of G.

Conversely, suppose that G has a subgroup K with |K| = 2p. We use the same idea as

in part (a). Let P be a Sylow p-subgroup of K. Since |K : P | = 2, P ⊴ K since index 2

subgroups are always normal. But then P charK. Similarly, |G : K| = 2 and so K ⊴ G.

Since P charK ⊴G, we get P ⊴G.

(c) Show that A4 has no subgroup of order 6.

Solution. We use (b). Since |A4| = 12 = 4p with p = 3, if A4 has a subgroup of order 6,

then A4 has a normal Sylow 3-subgroup by (b). Then A4 has a unique Sylow 3-subgroup

and so has only 2 elements of order 3, the non-identity elements in this subgroup. But A4

has 8 elements of order 3 (the 3-cycles). This contradiction shows that A4 cannot have such

a subgroup of order 6.

2 (15 pts).

(a) Consider the group with presentation (x, y|x2 = 1, y2 = 1, (xy)n = 1) for some n ≥ 3.

Show that this group is isomorphic to the dihedral group D2n.
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Solution. We think of D2n as the set {aibj|0 ≤ i ≤ n − 1, 0 ≤ j ≤ 1} with 2n elements

and the mulitplication rules an = b2 = 1, ba = a−1b.

Let H = (x, y|x2 = 1, y2 = 1, (xy)n = 1). By the universal property of the free group,

there is a unique homomorphism ϕ̃ : F (x, y) → D2n such that ϕ̃(x) = ab, ϕ̃(y) = b. (Note

that the elements x and y have order 2, so they must correspond to order 2 elements of

D2n— so it is natural to send them to two different reflections in D2n).

We check that x2, y2, and (xy)n are all in the kernel of ϕ̃, since ϕ̃(x2) = abab = aa−1b2 = 1,

ϕ̃(y2) = b2 = 1, and ϕ̃((xy)n) = (ab2)n = an = 1. This means from the universal property of

a presentation that there is a unique homomorphism ϕ : H → D2n such that ϕ(x) = ab and

ϕ(y) = b.

Let us show a number of different methods for completing the proof, all of which appeared

on some students’ papers.

Method 1 :

We showed in class and in the notes that (a, b|an = 1, b2 = 1, ba = a−1b) is actually a

presentation of D2n. So we can use this to easily define a homomorphism ψ : D2n → H as

well: Define ψ̃ : F (a, b) → H where ψ̃(a) = xy, ψ̃(b) = y; check that all of the relations get

sent to 1 by ψ̃ and so there is an induced homomorphism ψ : D2n → H with ψ(a) = xy and

ψ(b) = y. But now ϕψ(a) = ϕ(xy) = abb = a and ϕψ(b) = b. So ϕψ is trivial on a set of

generators of D2n, so ϕψ = 1D2n . Similarly one sees that ψϕ = 1H . So ψ = ϕ−1 and ϕ is an

isomorphism.

Method 2 :

Note that D2n is generated by ab and b, since any subgroup containing these elements also

contains abb−1 = a, and therefore contains all elements aibj. Thus ϕ is surjective. We just

need to prove that ϕ is injective. Since x2 = 1 in H, x−1 = x. Similarly, y−1 = y. Thus any

word in the generators x, y is equal in H to a word with positive powers of x and y. Also,

since x2 = y2 = 1, we never need any power greater than 1. It follows that every word in

x, y is equal to one of the form (xy)i, (xy)ix, (yx)i, or (yx)iy for some i ≥ 0. In other words

these are the words with alternating x’s and y’s. Now (yx) = y−1x−1 = (xy)−1 = (xy)n−1

so the last two forms are unnecessary. Since (xy)n = 1, every word is equal in H to one of

the form (xy)i or (xy)ix where 0 ≤ i < n. There are 2n such words, so |H| ≤ 2n. Since

|D2n| = 2n and ϕ is surjective, ϕ must also be injective and hence an isomorphism.

Method 3 :

This is the same as Method 2 but with a different way of conceptualizing how to prove

injectivity. We know that in D2n the elements a and b have nice relations between them, so

in H we focus on the corresponding elements z = xy and y. Since zy = (xy)y = x, and H

is generated by x and y, we see that z and y also generate H. Moreover, zn = (xy)n = 1

and y2 = 1 are relations, and we also have yz = yxy = (yx)y = (xy)−1y = z−1y since



(yx) = y−1x−1 = (xy)−1. Now every element in H is equal to a word in the generators y

and z and in any such word the relation yz = z−1y allows one to move all y′s to the right,

leaving a word ziyj. Since zn = 1 and y2 = 1, every element of G is equal to one of the

elements {ziyj|0 ≤ i ≤ n − 1, 0 ≤ j ≤ 1}, so |G| ≤ 2n. Otherwise the proof is the same as

in Method 2.

(b) Suppose that G is any finite group which has order at least 6 and is generated by two

elements of order 2. Show that G ∼= D2n for some n ≥ 3.

Solution.

Let G be generated by elements b and c of order 2. The element (bc) has finite order

since G is finite, say |bc| = n. Since b2 = c2 = 1 and (bc)n = 1, there is a homomorphism

ϕ : H = (x, y|x2 = y2 = (xy)n = 1) → G with ϕ(x) = b and ϕ(y) = c and since b and c

generate G, ϕ is surjective. We know that H ∼= D2n, so |H| = 2n. So |G| ≤ 2n. Since G

has an element of order n, |G| is a multiple of n. If |G| = n, this means that G is generated

by bc, so G is cyclic of order n. But then G can only have at most one element of order 2,

and cannot be generated by elements of order 2 unless |G| = 2, contradicting the hypothesis.

Thus |G| > n, which forces |G| = 2n. Now ϕ has to be an isomorphism, so G ∼= H ∼= D2n.


