MATH 200A FALL 2021 MIDTERM SOLUTIONS

1 (15 pts).

(a) If P is a Sylow p-subgroup of a finite group G, prove that $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$. (This was a homework exercise - I want you to reprove it).

Solution. Note that $P \unlhd N_{G}(P)$ by definition. Also, since $|P|$ is the maximum power of p dividing $|G|,|P|$ is also the maximum power of p dividing $\left|N_{G}(P)\right|$. So P is a Sylow p-subgroup of $N_{G}(P)$. Since $P \unlhd N_{G}(P)$, we know that this means that P is the unique Sylow p-subgroup of $N_{G}(P)$, and in particular P char $N_{G}(P)$. Now $N_{G}(P) \unlhd N_{G}\left(N_{G}(P)\right)$, again by definition. Since

$$
P \operatorname{char} N_{G}(P) \unlhd N_{G}\left(N_{G}(P)\right),
$$

by a result from class we have $P \unlhd N_{G}\left(N_{G}(P)\right)$. Since $N_{G}(P)$ is the unique largest subgroup of G inside of which P is normal, $N_{G}\left(N_{G}(P)\right) \subseteq N_{G}(P)$. The reverse inclusion holds by definition, so $N_{G}(P)=N_{G}\left(N_{G}(P)\right)$.
(b) Let p be an odd prime. Prove that a group G of order $4 p$ has a normal Sylow p-subgroup if and only if G has a subgroup of order $2 p$.

Solution. Suppose first that P is a normal Sylow p-subgroup of G. By Cauchy's theorem, G has an element of order 2, say x, and so $H=\langle x\rangle$ is a subgroup of order 2. Now $|P \cap H|$ divides both 2 and p by Lagrange, and so is 1. It follows that $|H P|=|H||P| /|H \cap P|=2 p$. Moreover, since $P \unlhd G, H P$ is a subgroup of G.

Conversely, suppose that G has a subgroup K with $|K|=2 p$. We use the same idea as in part (a). Let P be a Sylow p-subgroup of K. Since $|K: P|=2, P \unlhd K$ since index 2 subgroups are always normal. But then P char K. Similarly, $|G: K|=2$ and so $K \unlhd G$. Since P char $K \unlhd G$, we get $P \unlhd G$.
(c) Show that A_{4} has no subgroup of order 6 .

Solution. We use (b). Since $\left|A_{4}\right|=12=4 p$ with $p=3$, if A_{4} has a subgroup of order 6 , then A_{4} has a normal Sylow 3 -subgroup by (b). Then A_{4} has a unique Sylow 3 -subgroup and so has only 2 elements of order 3 , the non-identity elements in this subgroup. But A_{4} has 8 elements of order 3 (the 3 -cycles). This contradiction shows that A_{4} cannot have such a subgroup of order 6 .

2 (15 pts).

(a) Consider the group with presentation $\left(x, y \mid x^{2}=1, y^{2}=1,(x y)^{n}=1\right)$ for some $n \geq 3$. Show that this group is isomorphic to the dihedral group $D_{2 n}$.

Solution. We think of $D_{2 n}$ as the set $\left\{a^{i} b^{j} \mid 0 \leq i \leq n-1,0 \leq j \leq 1\right\}$ with $2 n$ elements and the mulitplication rules $a^{n}=b^{2}=1, b a=a^{-1} b$.

Let $H=\left(x, y \mid x^{2}=1, y^{2}=1,(x y)^{n}=1\right)$. By the universal property of the free group, there is a unique homomorphism $\widetilde{\phi}: F(x, y) \rightarrow D_{2 n}$ such that $\widetilde{\phi}(x)=a b, \widetilde{\phi}(y)=b$. (Note that the elements x and y have order 2, so they must correspond to order 2 elements of $D_{2 n}$ - so it is natural to send them to two different reflections in $\left.D_{2 n}\right)$.

We check that x^{2}, y^{2}, and $(x y)^{n}$ are all in the kernel of $\widetilde{\phi}$, since $\widetilde{\phi}\left(x^{2}\right)=a b a b=a a^{-1} b^{2}=1$, $\widetilde{\phi}\left(y^{2}\right)=b^{2}=1$, and $\widetilde{\phi}\left((x y)^{n}\right)=\left(a b^{2}\right)^{n}=a^{n}=1$. This means from the universal property of a presentation that there is a unique homomorphism $\phi: H \rightarrow D_{2 n}$ such that $\phi(x)=a b$ and $\phi(y)=b$.

Let us show a number of different methods for completing the proof, all of which appeared on some students' papers.

Method 1:

We showed in class and in the notes that $\left(a, b \mid a^{n}=1, b^{2}=1, b a=a^{-1} b\right)$ is actually a presentation of $D_{2 n}$. So we can use this to easily define a homomorphism $\psi: D_{2 n} \rightarrow H$ as well: Define $\widetilde{\psi}: F(a, b) \rightarrow H$ where $\widetilde{\psi}(a)=x y, \widetilde{\psi}(b)=y$; check that all of the relations get sent to 1 by $\widetilde{\psi}$ and so there is an induced homomorphism $\psi: D_{2 n} \rightarrow H$ with $\psi(a)=x y$ and $\psi(b)=y$. But now $\phi \psi(a)=\phi(x y)=a b b=a$ and $\phi \psi(b)=b$. So $\phi \psi$ is trivial on a set of generators of $D_{2 n}$, so $\phi \psi=1_{D_{2 n}}$. Similarly one sees that $\psi \phi=1_{H}$. So $\psi=\phi^{-1}$ and ϕ is an isomorphism.

Method 2:

Note that $D_{2 n}$ is generated by $a b$ and b, since any subgroup containing these elements also contains $a b b^{-1}=a$, and therefore contains all elements $a^{i} b^{j}$. Thus ϕ is surjective. We just need to prove that ϕ is injective. Since $x^{2}=1$ in $H, x^{-1}=x$. Similarly, $y^{-1}=y$. Thus any word in the generators x, y is equal in H to a word with positive powers of x and y. Also, since $x^{2}=y^{2}=1$, we never need any power greater than 1 . It follows that every word in x, y is equal to one of the form $(x y)^{i},(x y)^{i} x,(y x)^{i}$, or $(y x)^{i} y$ for some $i \geq 0$. In other words these are the words with alternating x 's and y 's. Now $(y x)=y^{-1} x^{-1}=(x y)^{-1}=(x y)^{n-1}$ so the last two forms are unnecessary. Since $(x y)^{n}=1$, every word is equal in H to one of the form $(x y)^{i}$ or $(x y)^{i} x$ where $0 \leq i<n$. There are $2 n$ such words, so $|H| \leq 2 n$. Since $\left|D_{2 n}\right|=2 n$ and ϕ is surjective, ϕ must also be injective and hence an isomorphism.

Method 3:

This is the same as Method 2 but with a different way of conceptualizing how to prove injectivity. We know that in $D_{2 n}$ the elements a and b have nice relations between them, so in H we focus on the corresponding elements $z=x y$ and y. Since $z y=(x y) y=x$, and H is generated by x and y, we see that z and y also generate H. Moreover, $z^{n}=(x y)^{n}=1$ and $y^{2}=1$ are relations, and we also have $y z=y x y=(y x) y=(x y)^{-1} y=z^{-1} y$ since
$(y x)=y^{-1} x^{-1}=(x y)^{-1}$. Now every element in H is equal to a word in the generators y and z and in any such word the relation $y z=z^{-1} y$ allows one to move all y^{\prime} s to the right, leaving a word $z^{i} y^{j}$. Since $z^{n}=1$ and $y^{2}=1$, every element of G is equal to one of the elements $\left\{z^{i} y^{j} \mid 0 \leq i \leq n-1,0 \leq j \leq 1\right\}$, so $|G| \leq 2 n$. Otherwise the proof is the same as in Method 2.
(b) Suppose that G is any finite group which has order at least 6 and is generated by two elements of order 2 . Show that $G \cong D_{2 n}$ for some $n \geq 3$.

Solution.

Let G be generated by elements b and c of order 2 . The element $(b c)$ has finite order since G is finite, say $|b c|=n$. Since $b^{2}=c^{2}=1$ and $(b c)^{n}=1$, there is a homomorphism $\phi: H=\left(x, y \mid x^{2}=y^{2}=(x y)^{n}=1\right) \rightarrow G$ with $\phi(x)=b$ and $\phi(y)=c$ and since b and c generate G, ϕ is surjective. We know that $H \cong D_{2 n}$, so $|H|=2 n$. So $|G| \leq 2 n$. Since G has an element of order $n,|G|$ is a multiple of n. If $|G|=n$, this means that G is generated by $b c$, so G is cyclic of order n. But then G can only have at most one element of order 2 , and cannot be generated by elements of order 2 unless $|G|=2$, contradicting the hypothesis. Thus $|G|>n$, which forces $|G|=2 n$. Now ϕ has to be an isomorphism, so $G \cong H \cong D_{2 n}$.

