MATH 200A FALL 2021 MIDTERM SOLUTIONS

1 (15 pts).
(a) If P is a Sylow p-subgroup of a finite group G, prove that Ng(Ng(P)) = Ng(P). (This

was a homework exercise— I want you to reprove it).

Solution. Note that P < Ng(P) by definition. Also, since |P| is the maximum power
of p dividing |G|, | P| is also the maximum power of p dividing |Ng(P)|. So P is a Sylow
p-subgroup of Ng(P). Since P < Ng(P), we know that this means that P is the unique
Sylow p-subgroup of Ng(P), and in particular P char Ng(P). Now Ng(P) < Ng(Ng(P)),
again by definition. Since

P char Ng(P) < Ng(Ng(P)),
by a result from class we have P < Ng(Ng(P)). Since Ng(P) is the unique largest subgroup
of G inside of which P is normal, Ng(Ng(P)) € Ng(P). The reverse inclusion holds by
definition, so Ng(P) = Ng(Ng(P)).

(b) Let p be an odd prime. Prove that a group G of order 4p has a normal Sylow p-subgroup
if and only if G has a subgroup of order 2p.

Solution. Suppose first that P is a normal Sylow p-subgroup of G. By Cauchy’s theorem,
G has an element of order 2, say z, and so H = (z) is a subgroup of order 2. Now |P N H|
divides both 2 and p by Lagrange, and so is 1. It follows that |HP| = |H||P|/|H N P| = 2p.
Moreover, since P I G, HP is a subgroup of G.

Conversely, suppose that G has a subgroup K with |K| = 2p. We use the same idea as
in part (a). Let P be a Sylow p-subgroup of K. Since |K : P| = 2, P < K since index 2
subgroups are always normal. But then P char K. Similarly, |G : K| = 2 and so K 9 G.
Since Pchar K <G, we get P JG.

(c) Show that A4 has no subgroup of order 6.

Solution. We use (b). Since |A4] = 12 = 4p with p = 3, if A4 has a subgroup of order 6,
then A, has a normal Sylow 3-subgroup by (b). Then A, has a unique Sylow 3-subgroup
and so has only 2 elements of order 3, the non-identity elements in this subgroup. But Ay
has 8 elements of order 3 (the 3-cycles). This contradiction shows that A, cannot have such
a subgroup of order 6.

2 (15 pts).

(a) Consider the group with presentation (z,y|z? = 1,3? = 1, (zy)" = 1) for some n > 3.

Show that this group is isomorphic to the dihedral group Ds,.
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Solution. We think of Dy, as the set {a’0’|0 < i < n —1,0 < j < 1} with 2n elements
and the mulitplication rules a” = b* = 1, ba = a~'b.

Let H = (z,y|l#? = 1,y?> = 1,(zy)" = 1). By the universal property of the free group,
there is a unique homomorphism gg : F(z,y) — Day, such that &5(95) = ab, qg(y) = b. (Note
that the elements x and y have order 2, so they must correspond to order 2 elements of
Dy,— so it is natural to send them to two different reflections in Dsy,).

We check that 22, 42, and (zy)" are all in the kernel of ¢, since ¢(z2) = abab = aa~'b? = 1,
d(y?) = b2 =1, and ¢((zy)") = (ab?)" = a™ = 1. This means from the universal property of
a presentation that there is a unique homomorphism ¢ : H — Dy, such that ¢(x) = ab and
o(y) =b.

Let us show a number of different methods for completing the proof, all of which appeared

on some students’ papers.
Method 1:

We showed in class and in the notes that (a,bla™ = 1,0 = 1,ba = a~'b) is actually a
presentation of Ds,. So we can use this to easily define a homomorphism v : Dy, — H as
well: Define ¢ : F(a,b) — H where 1(a) = zy, ¥ (b) = y; check that all of the relations get
sent to 1 by {/; and so there is an induced homomorphism v : Do, — H with 1(a) = zy and
¥(b) = y. But now ¢io(a) = ¢(zy) = abb = a and ¢y(b) = b. So ¢ is trivial on a set of
generators of Ds,, so ¢ = 1p, . Similarly one sees that ¢ = 1. So 1) = ¢! and ¢ is an

isomorphism.

Method 2:
Note that D,, is generated by ab and b, since any subgroup containing these elements also
contains abb™! = a, and therefore contains all elements a’t’. Thus ¢ is surjective. We just
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need to prove that ¢ is injective. Since 22 = 1 in H, =% = x. Similarly, y~! = y. Thus any

word in the generators x,y is equal in H to a word with positive powers of x and y. Also,

since x?

= y? = 1, we never need any power greater than 1. It follows that every word in
z,y is equal to one of the form (zy)’, (zy)'z, (yx)’, or (yx)'y for some i > 0. In other words
these are the words with alternating x’s and y’s. Now (yz) = y~'z7! = (2y)™! = (zy)"!
so the last two forms are unnecessary. Since (zy)" = 1, every word is equal in H to one of
the form (xy)’ or (zy)'z where 0 < i < n. There are 2n such words, so |H| < 2n. Since

| Day,| = 2n and ¢ is surjective, ¢ must also be injective and hence an isomorphism.

Method 3:

This is the same as Method 2 but with a different way of conceptualizing how to prove
injectivity. We know that in Dy, the elements a and b have nice relations between them, so
in H we focus on the corresponding elements z = xy and y. Since zy = (zy)y = x, and H
is generated by x and y, we see that z and y also generate H. Moreover, 2" = (zy)” = 1

and y? = 1 are relations, and we also have yz = yaxy = (yr)y = (vy) 'y = 2z~ 'y since
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(yz) =y~ la™! = (ay)™".
and z and in any such word the relation yz = 2!y allows one to move all ¥s to the right,

Now every element in H is equal to a word in the generators y

leaving a word z'y’. Since 2" = 1 and y? = 1, every element of G is equal to one of the
elements {z'97|0 <i <n—1,0 < j <1}, so |G| < 2n. Otherwise the proof is the same as
in Method 2.

(b) Suppose that G is any finite group which has order at least 6 and is generated by two
elements of order 2. Show that G & D,,, for some n > 3.

Solution.

Let G be generated by elements b and ¢ of order 2. The element (bc) has finite order
since G is finite, say |bc| = n. Since b* = ¢*> = 1 and (bc)" = 1, there is a homomorphism
¢: H = (z,y|lz* = y* = (zy)" = 1) — G with ¢(z) = b and ¢(y) = ¢ and since b and c
generate G, ¢ is surjective. We know that H = Ds,, so |H| = 2n. So |G| < 2n. Since G
has an element of order n, |G| is a multiple of n. If |G| = n, this means that G is generated
by be, so G is cyclic of order n. But then G can only have at most one element of order 2,
and cannot be generated by elements of order 2 unless |G| = 2, contradicting the hypothesis.
Thus |G| > n, which forces |G| = 2n. Now ¢ has to be an isomorphism, so G = H = Dy,,.



