Math 201a Fall 2023 Exercises Set 2

October 20, 2023

As usual, feedback on these optional problems is welcome.

1. Check that the following two ways of thinking about what it means for functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ to be adjoint are equivalent:
(i) There exists a family of isomorphisms $\Phi_{M, N}: \operatorname{Hom}_{\mathcal{D}}(F M, N) \rightarrow \operatorname{Hom}_{\mathcal{C}}(M, G N)$, natural in $M \in \mathcal{C}$ and $N \in \mathcal{D}$.
(ii) There are morphisms of functors $\eta: \mathrm{id}_{\mathcal{C}} \rightarrow G \circ F$ and $\epsilon: F \circ G \rightarrow \operatorname{id}_{\mathcal{D}}$ such that the compositions $F \xrightarrow{F\left(\eta_{-}\right)} F \circ G \circ F \xrightarrow{\epsilon_{F(-)}} F$ and $G \xrightarrow{\eta_{G(-)}} G \circ F \circ G \xrightarrow{G\left(\epsilon_{-}\right)} G$ are the identity morphisms of functors.
2. $(\mathcal{C}, \otimes, a, \mathbb{1}, l, r)$ be a monoidal category.
(a) Let $\operatorname{Skel} \mathcal{C}$ be any skeleton of \mathcal{C}, a full subcategory containing exactly one object from each isomorphism class of \mathcal{C} (we can assume that $\mathbb{1} \in \operatorname{Skel} \mathcal{C}$.) Show that there is a monoidal structure (Skel $\left.\mathcal{C}, \otimes^{\prime}, a^{\prime}, \mathbb{1}, l, r\right)$ such that the inclusion functor $i: \operatorname{Skel} \mathcal{C} \rightarrow \mathcal{C}$ is a monoidal equivalence. Show that the unique quasi-inverse $j: \mathcal{C} \rightarrow \mathrm{Skel} \mathcal{C}$ is also naturally a monoidal functor.
(Hint: for objects $M, N \in \operatorname{Skel} \mathcal{C}$, define $M \otimes^{\prime} N$ to be the unique object in Skel \mathcal{C} which is isomorphic to $M \otimes N$, and fix arbitrarily an isomorphism $J_{M, N}: M \otimes N \rightarrow M \otimes^{\prime} N$ for each M, N. There is a unique way to define the action of \otimes^{\prime} on morphisms and the associativity constraints a^{\prime}, by using these isomorphisms J, so that $\left(i, J, 1_{\mathbb{I}}\right)$ is a monoidal equivalence.
(b) Suppose we have an arbitrary monoidal equivalence

$$
(F, J, \phi):(\mathcal{C}, \otimes, a, \mathbb{1}, l, r) \rightarrow\left(\mathcal{D}, \otimes^{\prime}, a^{\prime}, \mathbb{1}^{\prime}, l^{\prime}, r^{\prime}\right)
$$

By definition this means a monoidal functor which is an equivalence of categories. Show that there is a quasi-inverse G such that $\left(G, J^{\prime}, \phi^{\prime}\right)$ is also a monoidal equivalence. (Hint: use part (a) to reduce to the case of a skeletal monoidal category).
3. Consider the category $\mathcal{D}=\operatorname{Fun}(\mathcal{C}, \mathcal{C})$, whose objects are functors and the morphisms are natural transformations. We saw that $\left(\mathcal{D}, \circ, a, \mathrm{id}_{\mathcal{C}}, l, r\right)$ is monoidal, where the product is the composition of functors, and a, l, r can be taken to be actual equalities.
(a) Show that a left dual to $G \in \mathcal{D}$ is a left adjoint F to G, and a right dual to G is a right adjoint H to G. Thus an object in \mathcal{D} is rigid if and only if it has both left and right adjoints.
(b) Show that G is an invertible object in \mathcal{C} if and only if G is an equivalence of categories from $\mathcal{C} \rightarrow \mathcal{C}$.
4. In class, for any monoidal category $(\mathcal{C}, \otimes, a, \mathbb{1}, l, r)$ we defined a functor $F: \mathcal{C} \rightarrow$ $\operatorname{Fun}(\mathcal{C}, \mathcal{C})$ by $F(M)=M \otimes$ - and claimed that (F, J, ϕ) is monoidal, where $\operatorname{Fun}(\mathcal{C}, \mathcal{C})$ has the monoidal structure as in problem 3, and $J_{M, N}: F(M) \otimes F(N) \rightarrow F(M \otimes N)$ is given by the associativity constraint $a_{M, N,-}^{-1}: M \otimes(N \otimes-) \rightarrow(M \otimes N) \otimes-$, and ϕ is given by l^{-1}. Check the details carefully that this is a monoidal functor. What adjustments need to be made in order for $G(M)=-\otimes M$ to also naturally be a monoidal functor?
4. $(\mathcal{C}, \otimes, a, \mathbb{1}, l, r)$ be a monoidal category. Prove some of the following facts about duals we stated without proof in class:
(a) If X has a left dual X^{*}, then the functors $\left(-\otimes X,-\otimes X^{*}\right)$ form an adjoint pair.
(b) For any morphism $f: X \rightarrow Y$, where X and Y have left duals, we defined the dual morphism $f^{*}: Y^{*} \rightarrow X^{*}$. Show that if also $g: Y \rightarrow Z$ and X, Y, Z have left duals then $(g \circ f)^{*}=f^{*} \circ g^{*}$.
(c) If X and Y have left duals, then $X \otimes Y$ has a left dual and $(X \otimes Y)^{*} \cong Y^{*} \otimes X^{*}$.
5. Let R be a commutative ring. Consider $\left(\mathcal{C}=R-\operatorname{Mod}, \otimes_{R}, a, \mathbb{1}=R, l, r\right)$ where a, l, r are the canonical isomorphisms.
(a) Suppose that $M \in \mathcal{C}$. Show that if M has a left dual M^{*} or a right dual ${ }^{*} M$, then M is a projective module. (Hint: Hom/Tensor adjointness shows that $\left(-\otimes M, \operatorname{Hom}_{R}(M,-)\right)$ is an adjoint pair of functors $\mathcal{C} \rightarrow \mathcal{C}$. If M has a left dual M^{*}, then $\left(-\otimes M,-\otimes M^{*}\right)$ is also an adjoint pair.)
(b) If M has a left dual M^{*}, then M is finitely generated.
(c) If M is a finitely generated projective module, then show that $\operatorname{Hom}_{R}(M, R)$ is both a right and left dual to M. (Hint: to define coev : $R \rightarrow M \otimes_{R} \operatorname{Hom}_{R}(M, R)$, choose a surjective module map $f: R^{n} \rightarrow M$ for some n; since M is projective there is a splitting $g: M \rightarrow R^{n}$. Define $m_{i}=f\left(e_{i}\right)$ for the standard free basis $\left\{e_{i}\right\}$ of R^{n} and let $g_{i}=p_{i} \circ g: M \rightarrow R$ for each i, where $p_{i}: R^{n} \rightarrow R$ is the i th projection. Now define $\left.\operatorname{coev}(r)=\sum_{i=1}^{n} r m_{i} \otimes g_{i}.\right)$
6. In problem set $1 \# 8$, you showed that if \mathcal{C} is a category with products and a terminal object T, then you can use the product Π to define a monoidal category $(\mathcal{C}, \Pi, a, \mathbb{1}=T, l, r)$ for the canonical isomorphism a and where l and r are projections.

Show that the only object that has a left (or right) dual in this category is the unit object $\mathbb{1}=T$.
(Of course, an analogous result holds for the monoidal category with product given by coproduct and unit object being the initial object.)
7. let G be a group and k a field. Recall from lecture on $10 / 20$ that a projective representation of G over k with Schur multiplier ψ is a k-vector space V and a function $\rho: G \rightarrow \mathrm{GL}_{k}(V)$ such that $\rho_{g} \circ \rho_{h}=\psi(g, h) \rho_{g h}$ for all g, h, for some scalars $\psi(g, h) \in k^{\times}$. We showed that this implies that $\psi: G \times G \rightarrow k^{\times}$must be a 2 -cocycle, i.e. $\psi(g h, k) \psi(g, h)=$ $\psi(g, h k) \psi(h, k)$ for all g, h, k. That is, $\psi \in Z^{2}\left(G, k^{\times}\right)$in the notation of group cohomlogy.

Now for fixed ψ let $\operatorname{Rep}_{\psi}(G)$ be the set of projective G-representations with Schur multiplier ψ. As mentioned in class, $\operatorname{Rep}_{\psi}(G)$ is naturally a left $\operatorname{Rep}(G)$-module category, where for $V \in \operatorname{Rep}(G)$ and $W \in \operatorname{Rep}_{\psi}(G)$, we define $V \otimes W=V \otimes_{k} W$ with diagonal action $g(v \otimes w)=g v \otimes g w$ as usual; it is easy to check that $V \otimes_{k} W \in \operatorname{Rep}_{\psi}(G)$ again.

Now consider two 2-cocycles ψ and ϕ. Show that if $\phi \psi^{-1} \in B^{2}\left(G, k^{\times}\right)$is a 2-coboundary, that is there exists a function $\theta: G \rightarrow k^{\times}$such that $\phi(g, h) \psi(g, h)^{-1}=\theta(g) \theta(g h)^{-1} \theta(h)$ for all g, h, then there is a $\operatorname{Rep}(G)$-module equivalence $F: \operatorname{Rep}_{\psi}(G) \rightarrow \operatorname{Rep}_{\phi}(G)$.

