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MATH 31AH Midterm 2 Solutions
1) a) Let

A =


1 1 1
1 2 0
1 1 1
1 0 2

 .

Recalling that reduced echelon form requires that the only non-zero entry in a column which
contains a pivot is the pivot itself, we find that the reduced echelon form of A is

1 0 2
0 1 −1
0 0 0
0 0 0

 .

As the rank of a matrix is the number of pivots, we see that the rank of A is 2.
b) We refer to our answer in part (a). The columns which contain pivot variables in the reduced

echelon form of A form a basis for C (A). Likewise, the rows which contain pivots in the
reduced echelon form of A form a basis for R(A). We deduce then that

C (A) = Span




1
1
1
1

 ,


1
2
1
0




R(A) = Span


1
1
1

 ,

1
2
0

 .

Looking at the third column in the reduced echelon form of A tells us that the third column
of A is twice the first column vector minus the second column vector. Hence, we have

N (A) = Span


−2
1
1

 .

2) We row reduce the augment matrix 2 3 4 1 0 0
2 1 1 0 1 0
−1 1 2 0 0 1

 
1 0 0 −1 2 1

0 1 0 5 −8 −6
0 0 1 −3 5 4

 .

So we deduce that

A−1 =
−1 2 1

5 −8 −6
−3 5 4

 .

3) a) There can be no such matrix, for if Ax = b3 has infinitely many solutions, we know rank(A) < n.
But to say that Ax = b2 has a unique solution is to say that rank(A) = n.

b) Such a matrix does exist. As an example, consider

A =
1 0

0 1
0 0

 .

c) No such matrix exists. If Ax = 0 were to admit a unique solution, namely the trivial solution
x = 0, then we would have that rank(A) = n. However, for any A ∈ Rm×n we have rank(A) ≤
min{m,n} = n.
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4) Suppose there exist B ,C ∈Rm×n such that AB = Im and C A = In . From the first equality, we see that
for any b ∈Rm , x = Bb satisfies Ax = b. Therefore, rank(A) = m. On the other hand, if Ax = 0, then
multiplying by C on both sides yields x = 0. In other words, Ax = 0 only has x = 0 as a solution.
Consequentially rank(A) = n. From this we see that m = n. Moreover, multiplying AB = Im by C on
both sides yields B =C . Therefore B =C = A−1, so A is invertible.
Conversely, suppose that m = n and A is invertible. Then setting B = C = A−1 yields the desired
conclusion.

5) a) We first show linear independence. Suppose we have scalars c1, . . . ,cn ∈R such that

c1v1 + . . .+ cn vn = 0. (1)

If we dot each side of the equation by vi , the mutual orthogonality tells us that

ci‖vi‖2 = 0.

Since each of the vi are non-zero, we conclude that ci is zero. As this is true for i ∈ {1, . . . ,n},
we see that the collection {v1, . . . , vn} is linearly independent.
To show that the collection spans Rn , we note that the dimension of Rn is n. Since V :=
Span{v1, . . . , vn} satisfies di m(V ) = n and V ⊆Rn , it must be that V =Rn .

b) We claim that kerT = Span{v2, . . . , vn}. By mutual orthogonality, we certainly have Span{v2, . . . , vn} ⊆
kerT . To show the reverse inclusion, suppose we have x ∈ kerT . As {v1, . . . , vn} is a basis for
Rn , we know there exist scalars a1, . . . , an such that x = a1v1 + . . .+an vn . Then

T (x) = 0 =⇒ a1T (v1)+ . . .+anT (vn) = 0 =⇒ a1T (v1) = a1‖v1‖2 = 0 =⇒ a1 = 0.

So x ∈ Span{v2, . . . , vn}, as desired.
6) a) First, we check that the zero polynomial is in Ok . Let p(x) = 0. Then p(x) = 0 =−0 =−p(−x),

so p ∈Ok .
Next, we check that Ok is closed under addition. Suppose f , g ∈Ok . Then

−( f + g )(−x) =− f (−x)− g (−x) = f (x)+ g (x) = ( f + g )(x)

so f + g ∈Ok .
Lastly we check closure under scalar multiplication. Suppose that c ∈R and f ∈Ok . Then

−(c f )(x) =−c f (−x) = c(− f )(−x) = c f (x) = (c f )(x).

Therefore, Ok is indeed a subspace.
b) We nominate {x, x3, . . . , x`} as a basis for Ok , where `= k −1 if k is even, and `= k if k is odd.

To begin, it is clear that this collection is linearly independent, as this collection is a subset
of the monomials {1, x, x2, . . . , xk } which are linearly independent. To show that they span,
suppose f ∈Ok . Since the monomials are a basis for Pk , we may write

f (x) = a0 +a1x + . . .+ak xk

for some a0, . . . , ak ∈R. Since f is odd, we must have f (x) =− f (−x). In other words,

a0 +a1x +a2x2 + . . .+ak xk =−a0 +a1x −a2x2 + . . .+ (−1)k ak xk .

Comparing term by term, we see that in order for this equality to be true it must be that a2 =
−a2, . . . adk/2e =−adk/2e, which is only true if the aforementioned terms are all zero. Therefore,
we have that

f (x) = a1x +a3x3 + . . .+a`x`.

If k is even, this means the dimension of Ok is k
2 . Otherwise, the dimension is k+1

2 .


