MATH 31AH Midterm 2 Solutions

1) a) Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 1 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

Recalling that reduced echelon form requires that the only non-zero entry in a column which contains a pivot is the pivot itself, we find that the reduced echelon form of A is

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

As the rank of a matrix is the number of pivots, we see that the rank of A is 2 .
b) We refer to our answer in part (a). The columns which contain pivot variables in the reduced echelon form of A form a basis for $C(A)$. Likewise, the rows which contain pivots in the reduced echelon form of A form a basis for $R(A)$. We deduce then that

$$
\begin{aligned}
& C(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right]\right\} \\
& R(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]\right\} .
\end{aligned}
$$

Looking at the third column in the reduced echelon form of A tells us that the third column of A is twice the first column vector minus the second column vector. Hence, we have

$$
N(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\} .
$$

2) We row reduce the augment matrix

$$
\left[\begin{array}{cccccc}
2 & 3 & 4 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & -1 & 2 & 1 \\
0 & 1 & 0 & 5 & -8 & -6 \\
0 & 0 & 1 & -3 & 5 & 4
\end{array}\right] .
$$

So we deduce that

$$
A^{-1}=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
5 & -8 & -6 \\
-3 & 5 & 4
\end{array}\right] .
$$

3) a) There can be no such matrix, for if $A x=b_{3}$ has infinitely many solutions, we know $\operatorname{rank}(A)<n$. But to say that $A x=b_{2}$ has a unique solution is to say that $\operatorname{rank}(A)=n$.
b) Such a matrix does exist. As an example, consider

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] .
$$

c) No such matrix exists. If $A x=0$ were to admit a unique solution, namely the trivial solution $x=0$, then we would have that $\operatorname{rank}(A)=n$. However, for any $A \in \mathbb{R}^{m \times n}$ we have $\operatorname{rank}(A) \leq$ $\min \{m, n\}=n$.
4) Suppose there exist $B, C \in \mathbb{R}^{m \times n}$ such that $A B=I_{m}$ and $C A=I_{n}$. From the first equality, we see that for any $b \in \mathbb{R}^{m}, x=B b$ satisfies $A x=b$. Therefore, $\operatorname{rank}(A)=m$. On the other hand, if $A x=0$, then multiplying by C on both sides yields $x=0$. In other words, $A x=0$ only has $x=0$ as a solution. Consequentially $\operatorname{rank}(A)=n$. From this we see that $m=n$. Moreover, multiplying $A B=I_{m}$ by C on both sides yields $B=C$. Therefore $B=C=A^{-1}$, so A is invertible.
Conversely, suppose that $m=n$ and A is invertible. Then setting $B=C=A^{-1}$ yields the desired conclusion.
a) We first show linear independence. Suppose we have scalars $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
\begin{equation*}
c_{1} v_{1}+\ldots+c_{n} v_{n}=0 \tag{1}
\end{equation*}
$$

If we dot each side of the equation by v_{i}, the mutual orthogonality tells us that

$$
c_{i}\left\|v_{i}\right\|^{2}=0
$$

Since each of the v_{i} are non-zero, we conclude that c_{i} is zero. As this is true for $i \in\{1, \ldots, n\}$, we see that the collection $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent.
To show that the collection spans R^{n}, we note that the dimension of R^{n} is n. Since $V:=$ $\operatorname{Span}\left\{\nu_{1}, \ldots, v_{n}\right\}$ satisfies $\operatorname{dim}(V)=n$ and $V \subseteq \mathbb{R}^{n}$, it must be that $V=\mathbb{R}^{n}$.
b) We claim that $\operatorname{ker} T=\operatorname{Span}\left\{v_{2}, \ldots, v_{n}\right\}$. By mutual orthogonality, we certainly have $\operatorname{Span}\left\{v_{2}, \ldots, v_{n}\right\} \subseteq$ $\operatorname{ker} T$. To show the reverse inclusion, suppose we have $x \in \operatorname{ker} T$. As $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for \mathbb{R}^{n}, we know there exist scalars a_{1}, \ldots, a_{n} such that $x=a_{1} v_{1}+\ldots+a_{n} v_{n}$. Then

$$
T(x)=0 \Longrightarrow a_{1} T\left(\nu_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)=0 \Longrightarrow a_{1} T\left(\nu_{1}\right)=a_{1}\left\|\nu_{1}\right\|^{2}=0 \Longrightarrow a_{1}=0 .
$$

So $x \in \operatorname{Span}\left\{v_{2}, \ldots, v_{n}\right\}$, as desired.
a) First, we check that the zero polynomial is in O_{k}. Let $p(x)=0$. Then $p(x)=0=-0=-p(-x)$, so $p \in O_{k}$.
Next, we check that O_{k} is closed under addition. Suppose $f, g \in O_{k}$. Then

$$
-(f+g)(-x)=-f(-x)-g(-x)=f(x)+g(x)=(f+g)(x)
$$

so $f+g \in O_{k}$.
Lastly we check closure under scalar multiplication. Suppose that $c \in \mathbb{R}$ and $f \in O_{k}$. Then

$$
-(c f)(x)=-c f(-x)=c(-f)(-x)=c f(x)=(c f)(x)
$$

Therefore, O_{k} is indeed a subspace.
b) We nominate $\left\{x, x^{3}, \ldots, x^{\ell}\right\}$ as a basis for O_{k}, where $\ell=k-1$ if k is even, and $\ell=k$ if k is odd. To begin, it is clear that this collection is linearly independent, as this collection is a subset of the monomials $\left\{1, x, x^{2}, \ldots, x^{k}\right\}$ which are linearly independent. To show that they span, suppose $f \in O_{k}$. Since the monomials are a basis for P_{k}, we may write

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}
$$

for some $a_{0}, \ldots, a_{k} \in \mathbb{R}$. Since f is odd, we must have $f(x)=-f(-x)$. In other words,

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}=-a_{0}+a_{1} x-a_{2} x^{2}+\ldots+(-1)^{k} a_{k} x^{k}
$$

Comparing term by term, we see that in order for this equality to be true it must be that $a_{2}=$ $-a_{2}, \ldots a_{\lceil k / 2]}=-a_{[k / 2]}$, which is only true if the aforementioned terms are all zero. Therefore, we have that

$$
f(x)=a_{1} x+a_{3} x^{3}+\ldots+a_{\ell} x^{\ell} .
$$

If k is even, this means the dimension of O_{k} is $\frac{k}{2}$. Otherwise, the dimension is $\frac{k+1}{2}$.

