1) a) Let

<i>A</i> =	[1	1	1]	
	1	2	0	
	1	1	1	•
	1	0	2	

Recalling that reduced echelon form requires that the only non-zero entry in a column which contains a pivot is the pivot itself, we find that the reduced echelon form of *A* is

[]	. 0	2]	
0) 1	-1	
0) ()	0	•
) ()	0	

As the rank of a matrix is the number of pivots, we see that the rank of *A* is 2.

b) We refer to our answer in part (a). The columns which contain pivot variables in the reduced echelon form of *A* form a basis for C(A). Likewise, the rows which contain pivots in the reduced echelon form of *A* form a basis for R(A). We deduce then that

$$C(A) = \operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix} \right\}$$
$$R(A) = \operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0 \end{bmatrix} \right\}.$$

Looking at the third column in the reduced echelon form of *A* tells us that the third column of *A* is twice the first column vector minus the second column vector. Hence, we have

$$N(A) = \operatorname{Span}\left\{ \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}.$$

2) We row reduce the augment matrix

$$\begin{bmatrix} 2 & 3 & 4 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & -1 & 2 & 1 \\ 0 & 1 & 0 & 5 & -8 & -6 \\ 0 & 0 & 1 & -3 & 5 & 4 \end{bmatrix}.$$

So we deduce that

$$A^{-1} = \begin{bmatrix} -1 & 2 & 1\\ 5 & -8 & -6\\ -3 & 5 & 4 \end{bmatrix}.$$

- 3) a) There can be no such matrix, for if $Ax = b_3$ has infinitely many solutions, we know rank(A) < n. But to say that $Ax = b_2$ has a unique solution is to say that rank(A) = n.
 - b) Such a matrix does exist. As an example, consider

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

c) No such matrix exists. If Ax = 0 were to admit a unique solution, namely the trivial solution x = 0, then we would have that rank(A) = n. However, for any $A \in \mathbb{R}^{m \times n}$ we have $rank(A) \le \min\{m, n\} = n$.

4) Suppose there exist $B, C \in \mathbb{R}^{m \times n}$ such that $AB = I_m$ and $CA = I_n$. From the first equality, we see that for any $b \in \mathbb{R}^m$, x = Bb satisfies Ax = b. Therefore, rank(A) = m. On the other hand, if Ax = 0, then multiplying by *C* on both sides yields x = 0. In other words, Ax = 0 only has x = 0 as a solution. Consequentially rank(A) = n. From this we see that m = n. Moreover, multiplying $AB = I_m$ by *C* on both sides yields B = C. Therefore $B = C = A^{-1}$, so *A* is invertible. Conversely, suppose that m = n and *A* is invertible. Then setting $B = C = A^{-1}$ yields the desired

conversely, suppose that m = n and A is invertible. Then setting $B = C = A^{-1}$ yields the desired conclusion.

5) a) We first show linear independence. Suppose we have scalars $c_1, \ldots, c_n \in \mathbb{R}$ such that

$$c_1 v_1 + \ldots + c_n v_n = 0. (1)$$

If we dot each side of the equation by v_i , the mutual orthogonality tells us that

$$c_i \|v_i\|^2 = 0.$$

Since each of the v_i are non-zero, we conclude that c_i is zero. As this is true for $i \in \{1, ..., n\}$, we see that the collection $\{v_1, ..., v_n\}$ is linearly independent.

To show that the collection spans \mathbb{R}^n , we note that the dimension of \mathbb{R}^n is *n*. Since V := Span{ v_1, \ldots, v_n } satisfies dim(V) = n and $V \subseteq \mathbb{R}^n$, it must be that $V = \mathbb{R}^n$.

b) We claim that ker $T = \text{Span}\{v_2, ..., v_n\}$. By mutual orthogonality, we certainly have $\text{Span}\{v_2, ..., v_n\} \subseteq \text{ker } T$. To show the reverse inclusion, suppose we have $x \in \text{ker } T$. As $\{v_1, ..., v_n\}$ is a basis for \mathbb{R}^n , we know there exist scalars $a_1, ..., a_n$ such that $x = a_1v_1 + ... + a_nv_n$. Then

$$T(x) = 0 \implies a_1 T(v_1) + \ldots + a_n T(v_n) = 0 \implies a_1 T(v_1) = a_1 ||v_1||^2 = 0 \implies a_1 = 0.$$

So $x \in \text{Span}\{v_2, \dots, v_n\}$, as desired.

6) a) First, we check that the zero polynomial is in O_k . Let p(x) = 0. Then p(x) = 0 = -0 = -p(-x), so $p \in O_k$.

Next, we check that O_k is closed under addition. Suppose $f, g \in O_k$. Then

$$-(f+g)(-x) = -f(-x) - g(-x) = f(x) + g(x) = (f+g)(x)$$

so $f + g \in O_k$.

Lastly we check closure under scalar multiplication. Suppose that $c \in \mathbb{R}$ and $f \in O_k$. Then

$$-(cf)(x) = -cf(-x) = c(-f)(-x) = cf(x) = (cf)(x).$$

Therefore, O_k is indeed a subspace.

b) We nominate $\{x, x^3, ..., x^\ell\}$ as a basis for O_k , where $\ell = k - 1$ if k is even, and $\ell = k$ if k is odd. To begin, it is clear that this collection is linearly independent, as this collection is a subset of the monomials $\{1, x, x^2, ..., x^k\}$ which are linearly independent. To show that they span, suppose $f \in O_k$. Since the monomials are a basis for P_k , we may write

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k$$

for some $a_0, \ldots, a_k \in \mathbb{R}$. Since *f* is odd, we must have f(x) = -f(-x). In other words,

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_k x^k = -a_0 + a_1 x - a_2 x^2 + \ldots + (-1)^k a_k x^k.$$

Comparing term by term, we see that in order for this equality to be true it must be that $a_2 = -a_2, ..., a_{\lceil k/2 \rceil} = -a_{\lceil k/2 \rceil}$, which is only true if the aforementioned terms are all zero. Therefore, we have that

$$f(x) = a_1 x + a_3 x^3 + \ldots + a_{\ell} x^{\ell}$$

If k is even, this means the dimension of O_k is $\frac{k}{2}$. Otherwise, the dimension is $\frac{k+1}{2}$.