Solutions to Selected Exercises from Homework 5

5.1.12 Suppose for the sake of contradiction that there were no such $N \in \mathbb{N}$ with the property that $X \subseteq \bigcup_{i=1}^{N} U_i$. Define a sequence $\{x_k\} \subseteq X$ with the property that $x_k \notin \bigcup_{i=1}^{k} U_i$. By compactness of X, there must be some subsequence $\{x_{k_j}\}$ which converges to some point $b \in X$. As $X \subset \bigcup_{i=1}^{\infty} U_i$, we deduce that $b \in \bigcup_{i=1}^{\infty} U_i$. In other words, there is some M such that $b \in U_M$. By virtue of U_M being open, we know there exists some $\varepsilon > 0$ such that $B(b, \varepsilon) \subset U_M$. By construction, we also know there exists some J > 0 such that for j > J, $x_{k_j} \in B(b, \varepsilon)$. But for $k_j > M$, this contradicts the choice that $x_{k_j} \notin \bigcup_{i=1}^{k_j} U_i$. Therefore, it must be the case that there is some $N \in \mathbb{N}$ with the property that $X \subset \bigcup_{i=1}^{N} U_i$.

5.2.3 Let

denote a vertex of the rectangular box. Of course, in order to maximize volume it must be the case that \vec{x} is on the hemisphere $x^2 + y^2 + z^2 = r^2$. Using the relation $z = \sqrt{r^2 - x^2 - y^2}$, we define the volume function

 $\vec{x} = \begin{vmatrix} x \\ y \\ z \end{vmatrix}$

$$V: D \to \mathbb{R}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto (2x)(2y)\sqrt{r^2 - x^2 - y^2}$$

where we define the domain

$$D := \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : x, y \ge 0, \ r^2 - x^2 - y^2 \ge 0 \right\}.$$

We note that *V* is continuous and *D* is compact, so the Maximum Value Theorem applies. We first hunt for critical points. Observe that

$$DV(x, y) = \frac{4}{\sqrt{r^2 - x^2 - y^2}} \left[y(r^2 - 2x^2 - y^2) \quad x(r^2 - x^2 - 2y^2) \right]$$

In order for this to be the zero matrix, either x = y = 0, or we have the system of quadratic equations

$$r^{2} - 2x^{2} - y^{2} = 0$$

$$r^{2} - x^{2} - 2y^{2} = 0.$$

In the former case, we see that V(x, y) = 0 which is clearly a minimum. In the latter case, we find that

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{r}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

At the above mentioned point, we have $V(x, y) = \frac{4r^3}{3\sqrt{3}}$. We now check the boundary to ascertain whether or not this is indeed the global maximum. It's clear that if x = 0, r or y = 0, r then the volume is zero. Likewise, if $x^2 + y^2 = r^2$, then the volume is also zero. Hence, the maximal volume is $\frac{4r^3}{3\sqrt{3}}$.