Solutions to Selected Exercises from Homework 5

5.1.12 Suppose for the sake of contradiction that there were no such $N \in \mathbb{N}$ with the property that $X \subseteq \cup_{i=1}^{N} U_{i}$. Define a sequence $\left\{x_{k}\right\} \subseteq X$ with the property that $x_{k} \notin \cup_{i=1}^{k} U_{i}$. By compactness of X, there must be some subsequence $\left\{x_{k_{j}}\right\}$ which converges to some point $b \in X$. As $X \subset \cup_{i=1}^{\infty} U_{i}$, we deduce that $b \in \cup_{i=1}^{\infty} U_{i}$. In other words, there is some M such that $b \in U_{M}$. By virtue of U_{M} being open, we know there exists some $\varepsilon>0$ such that $B(b, \varepsilon) \subset U_{M}$. By construction, we also know there exists some $J>0$ such that for $j>J, x_{k_{j}} \in B(b, \varepsilon)$. But for $k_{j}>M$, this contradicts the choice that $x_{k_{j}} \notin \cup_{i=1}^{k_{j}} U_{i}$. Therefore, it must be the case that there is some $N \in \mathbb{N}$ with the property that $X \subset \cup_{i=1}^{N} U_{i}$.
5.2.3 Let

$$
\vec{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

denote a vertex of the rectangular box. Of course, in order to maximize volume it must be the case that \vec{x} is on the hemisphere $x^{2}+y^{2}+z^{2}=r^{2}$. Using the relation $z=\sqrt{r^{2}-x^{2}-y^{2}}$, we define the volume function

$$
\begin{aligned}
V: D & \rightarrow \mathbb{R} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & \mapsto(2 x)(2 y) \sqrt{r^{2}-x^{2}-y^{2}}
\end{aligned}
$$

where we define the domain

$$
D:=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}: x, y \geq 0, r^{2}-x^{2}-y^{2} \geq 0\right\} .
$$

We note that V is continuous and D is compact, so the Maximum Value Theorem applies. We first hunt for critical points. Observe that

$$
D V(x, y)=\frac{4}{\sqrt{r^{2}-x^{2}-y^{2}}}\left[y\left(r^{2}-2 x^{2}-y^{2}\right) \quad x\left(r^{2}-x^{2}-2 y^{2}\right)\right] .
$$

In order for this to be the zero matrix, either $x=y=0$, or we have the system of quadratic equations

$$
\begin{aligned}
& r^{2}-2 x^{2}-y^{2}=0 \\
& r^{2}-x^{2}-2 y^{2}=0 .
\end{aligned}
$$

In the former case, we see that $V(x, y)=0$ which is clearly a minimum. In the latter case, we find that

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{r}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

At the above mentioned point, we have $V(x, y)=\frac{4 r^{3}}{3 \sqrt{3}}$. We now check the boundary to ascertain whether or not this is indeed the global maximum. It's clear that if $x=0, r$ or $y=0, r$ then the volume is zero. Likewise, if $x^{2}+y^{2}=r^{2}$, then the volume is also zero. Hence, the maximal volume is $\frac{4 r^{3}}{3 \sqrt{3}}$.

