
MATH 31BH WINTER 2018 MIDTERM 1— SAMPLE SOLUTIONS

1 (15 pts).

(a) (10 pts). Let U and V be open subsets of Rn. Prove that U ∩ V is also open in Rn.

(b) (5 pts). For each k ≥ 1 suppose that Uk is an open subset of Rn. Let Y be the

intersection of all of these sets, in other words

Y =
∞⋂
k=1

Uk = {~x ∈ Rn | ~x ∈ Uk for all k ≥ 1}.

Must Y be open in Rn? Prove or give a counterexample.

Solution.

(a) Let ~x ∈ U ∩ V . We need to find δ > 0 such that B(~x, δ) ⊆ U ∩ V , where B(~x, δ) =

{~a ∈ Rn | ‖~x− ~a‖ < δ} is the open ball of radius δ around ~x.

Since U is open and ~x ∈ U , there must be δ1 > 0 such that B(~x, δ1) ⊆ U . Similarly, since

V is open and ~x ∈ V , there must be δ2 > 0 such that B(~x, δ2) ⊆ V . Now let δ = min(δ1, δ2)

and note that δ > 0 still. Then B(~x, δ) ⊆ B(~x, δ1) ⊆ U and B(~x, δ) ⊆ B(~x, δ2) ⊆ V . Hence

B(~x, δ) ⊆ U ∩ V as required.

(b) The set Y is not open in general. Take n = 1 and let Uk = (−1/k, 1/k). Since Uk is

an open interval, we know it is open in R. However, we claim that
⋂∞

k=1 Uk = {0}. To see

this, first note that it is obvious that 0 ∈ Uk for all k. On the other hand, if a 6= 0 we can

find a natural number k such that 1/k < |a|. Then a 6∈ Uk and so a 6∈
⋂∞

k=1 Uk. This proves

the claim. Now it is easy to see that {0} is not an open set in R: No matter what δ > 0 we

pick, B(0, δ) = (−δ, δ) will contain nonzero numbers and will not be contained in {0}.

Remark 0.1. Many students incorrectly claimed Y was open as an application of part (1).

Some students proved correctly by induction that U1 ∩ U2 ∩ · · · ∩ Um is open for any natural

number m. However, in general none of the finite intersections U1 ∩ U2 ∩ · · · ∩ Um is equal

to the infinite intersection
⋂∞

k=1 Uk, so this does not settle anything.

Another incorrect proof in the style of (1) is to find δk for each k such that B(~x, δk) ⊆ Uk

and then let δ = min(δk). First, one should be careful with minimums: the minimum of a

finite set of real numbers is defined but the minimum of an infinite set is not. However, you

could let δ be the infimum (greatest lower bound) of {δk|k ≥ 1}. The problem is that it is

possible then that δ = 0, so B(~x, δ) is not an open ball. That is precisely what happens in

the explicit example above, where in fact Uk = (−1/k, 1/k) = B(0, 1/k), and the infimum of

{1/k | k ≥ 1} is 0.
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2 (15 pts). Suppose that T : Rn → Rm is a linear transformation with standard matrix

A = [T ], where A is an m× n matrix. Thus T (~x) = A~x.

(a) (5 pts). Show that for all vectors ~x ∈ Rn, ‖A~x‖ ≤ c‖~x‖, where c =
√∑m

i=1

∑n
j=1 a

2
ij.

(b) (10 pts). Using part (a), prove that T is a continuous function.

Solution.

(a). Let Ai ∈ Rn be the transpose of the ith row of the matrix A. Then the ith entry

of A~x is equal to the dot product Ai · ~x. By Cauchy-Schwarz, |Ai · ~x| ≤ ‖Ai‖‖~x‖. Here,

‖Ai‖ =
√
a2i1 + · · ·+ a2in.

Thus

‖A~x‖ =
√

(A1 · ~x)2 + · · ·+ (Am · ~x)2 ≤
√

(‖A1‖‖~x‖)2 + · · ·+ (‖Am‖‖~x‖)2

=

√
‖A1‖2 + · · ·+‖Am‖2‖~x‖ =

√√√√ n∑
j=1

a21j + · · ·+
n∑

j=1

a2mj‖~x‖ =

√√√√ m∑
i=1

n∑
j=1

a2ij‖~x‖

as needed.

(b). Let ~a ∈ Rn. We prove that T is continuous at the point ~a. Given ε > 0, we need to

find δ > 0 such that if ‖~x− ~a‖ < δ then
∥∥T (~x)− T (~a)

∥∥ < ε.

Let c be the constant found in part (a). If c = 0 then necessarily A is the zero matrix and

so T (~x) = ~0 for all ~x; that is, T is the zero linear transformation. In this case given ε > 0

we can choose any δ > 0 we please. Then
∥∥T (~x)− T (~a)

∥∥ =
∥∥∥~0−~0∥∥∥ = 0 < ε for all ~x ∈ Rn,

so certainly for ~x with ‖~x− ~a‖ < δ.

Thus now assume that c 6= 0. Given ε > 0, we take δ = ε/c. Note that since T is linear,

we have T (~x)− T (~a) = T (~x− ~a). Thus if ‖~x− ~a‖ < δ, we have∥∥T (~x)− T (~a)
∥∥ =

∥∥T (~x− ~a)
∥∥ ≤ c‖~x− ~a‖ < cδ = ε,

where we have used part (a) in the first inequality. This proves continuity at the point ~a.

3 (10 pts). Write ~x =

[
x1
x2

]
. Let f : (R2 − {~0})→ R be given by f(~x) = x1√

x21 + x22

.

Does lim~x→~0 f(~x) exist? Justify your answer carefully using the (ε, δ)-definition of the

limit.

Solution.

The limit does not exist. The problem can be seen by looking along lines approaching the

origin. When x2 = 0 and x1 > 0, we have f(~x) = x1/
√
x21 = 1. When x1 = 0 and x2 6= 0, we

have f(~x) = 0. Points of both types lie in any ball of radius δ around the origin, and this

prevents the limit from existing.
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More formally, we write the proof as follows. Suppose that lim~x→~0 f(~x) = b. Let ε = 1/2.

Then there must exist δ > 0 such that if
∥∥∥~x−~0∥∥∥ =‖~x‖ < δ, then |f(~x)− b| < ε = 1/2. Now

B(~0, δ) contains both the point ~x =

(
δ/2

0

)
for which f(~x) = 1, and the point ~x′ =

(
0

δ/2

)
for which f(~x′) = 0. Thus in particular we must have both |0− b| < 1/2 and |1− b| < 1/2.

But then 1 = |1| = |b + (1 − b)| ≤ |b| + |1 − b| < 1/2 + 1/2 = 1, a contradiction. Thus the

limit does not exist.

Remark 0.2. An alternative approach is to make the intuition coming from approaching the

origin through two different lines more formal. A good way to do this is to use the notion

of convergent sequence. The following lemma is standard— it is not quite stated in the book

but the proof is essentially the same as the proof of Proposition 3.6. You are welcome to use

it from now on.

Lemma 0.3. Let f : U − {a} → Rm be a function, where U ⊆ Rn is open. Then

lim~x→~a f(~x) = ~b if and only if for all sequences {~xk} of points in U − {a} such that

limk→∞ ~xk = a, we have limk→∞ f(~xk) = ~b.

If we assume this lemma, then we note that {~xk =

[
1/k

0

]
} and {~x′k =

[
0

1/k

]
} are both

sequences with limk→∞ ~xk = ~0 and limk→∞ ~x′k = ~0. However f( ~xk) = 1 for all k and

f(~x′k) = 0 for all k, so limk→∞ f(~xk) = 1 and limk→∞ f(~x′k) = 0. By the lemma, lim~x→~a f(~x)

cannot exist, as it would have to equal both 0 and 1.
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