
MATH 31BH WINTER 2018 MIDTERM 2 SOLUTIONS

1 (15 pts). (Show your work, but no proof required). Suppose that f : R2 → R is given

by f

(
x

y

)
= 3x2 + xy2 − 2y3. Let ~a =

[
−2

1

]
and ~v =

[
−2

2

]
.

(a) (5 pts). Compute the gradient of f at ~a.

(b) (5 pts). Compute the directional derivative of f at ~a in the direction ~v.

(c) (5 pts). For what value c does the point ~a lie on the level curve f

(
x

y

)
= c ? For that

value of c, give an equation of the the tangent line to the level curve f

(
x

y

)
= c at the point

~a.

Solution.

(a). We have ∂f/∂x = 6x + y2 and ∂f/∂y = 2xy − 6y2. Thus ∇f
(
x

y

)
=

[
6x+ y2

2xy − 6y2

]

and so ∇f(~a) =

[
−11

−10

]
.

(b). We use that D~vf(~a) = ∇f(~a) · ~v. In this case we get

[
−11

−10

]
·

[
−2

2

]
= 22− 20 = 2.

(c). c = f(~a) = 12− 2− 2 = 8. Then we use that the gradient is orthogonal to the level

curve, and hence also to the tangent line to the level curve, at that point. So the tangent

line is {~x | (~x− ~a) · ∇f(~a) = 0}, or −11(x+ 2)− 10(y − 1) = 0.

2 (15 pts). Let A be an n× n matrix. Define f : Rn → R by f(x) = A~x · ~x = ~xTA~x.

(a) (10 pts). Prove using the definition of the derivative that f is differentiable and that

Df(~a)~h = A~a · ~h+ A~h · ~a.

(b) (5 pts). Fix some vector ~v ∈ Rn and let g : R→ Rn be given by g(t) = t2~v. Show that

f ◦ g : R→ R is differentiable at each t and find a formula for (f ◦ g)′(t).

Solution.

(a). Since we are given the formula for the derivative, to prove differentiability we just

need to check that

lim
~h→0

f(~a+ ~h)− f(~a)−Df(~a)~h

‖h‖
= lim

~h→0

A(~a+ ~h) · (~a+ ~h)− A~a · ~a− A~a · ~h− A~h · ~a
‖h‖

= 0.
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Expanding, the numerator of our limit is equal to

A~a · ~a+ A~h · ~a+ A~a · ~h+ A~h · ~h− A~a · ~a− A~a · ~h− A~h · ~a = A~h · ~h.

Using Cauchy-Schwarz, we have

|A~h · ~h| ≤
∥∥∥A~h∥∥∥∥∥∥~h∥∥∥ and thus |A

~h · ~h∥∥∥~h∥∥∥ | ≤
∥∥∥A~h∥∥∥ .

Since the function Rn → R given by ~x → A~x is linear, it is continuous, so we have

lim~h→0

∥∥∥A~h∥∥∥ = A~0 = 0. Hence

lim
~h→0

A~h · ~h∥∥∥~h∥∥∥ = 0

as well by the squeeze theorem.

(b). We just saw that f is differentiable at each ~a. The coordinate functions of g are all

polynomials in t and hence g is differentiable at every t as well. Thus by the chain rule f ◦ g
will be differentiable at each t, and we will have (f ◦ g)′(t) = Df(g(t)) ◦Dg(t).

We calculated Df above and so Df(g(t)) is the linear transformation with

Df(g(t))(~h) = Df(t2~v)(~h) = At2~v · ~h+ A~h · t2~v = t2(A~v · ~h+ A~h · ~v).

Since the ith coordinate function of g is gi = t2vi, we have dgi/dt = 2tvi and hence the

Jacobian matrix of g is

2tv1
. . .

2tvn

, so that Dg(t) : R→ Rn is given by

[Dg(t)](u) = u

2tv1
. . .

2tvn

 = 2tu~v.

Then

[Df(g(t)) ◦Dg(t)](u) = Df(g(t))(2ut~v) = t2(A~v · 2ut~v + A(2ut~v) · ~v) = 4t3(A~v · ~v)u

and so (f ◦ g)′(t) = 4t3(A~v · ~v).

3 (15 pts). Let f : R2 → R be defined by f

(
x

y

)
=

y3/x x 6= 0

0 x = 0
.

(a) (5 pts). Show that f has directional derivatives equal to 0 in every direction at the

origin ~0.

(b) (5 pts). Show that f is unbounded in every neighborhood of ~0.

(c) (5 pts). Is f differentiable at ~0?
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Solution.

(a). Consider D~vf . If v1 = 0, then f(t~v) = 0 for all t by definition, so

D~vf = lim
t→0

(f(t~v)− f(~0))/t = lim
t→0

(0− 0)/t = 0.

On the other hand, if v1 6= 0, then

D~vf = lim
t→0

(f(t~v)− f(~0)/t = lim
t→0

(tv2)
3/t(tv1) = lim

t→0
(v32/v1)t = 0.

To justify the last equality we can note that (v32/v1)t is a polynomial function of t and hence

is continuous.

(b). Let δ > 0 and consider the neighborhood B(~0, δ). Fix M > 0. We need to show

that there is a point ~x ∈ B(~0, δ) such that f(~x) > M . Choose a number t such that

0 < t < min(1/M, 1, δ/
√

2). Consider the point ~x =

[
t4

t

]
. Since t < 1, we have t8 < t2.

Thus ‖~x‖ =
√
t8 + t2 <

√
t2 + t2 =

√
2t < δ and so ~x ∈ B(~0, δ). On the other hand,

f(~x) = t3/t4 = 1/t > M .

(c). In fact f is not even continuous at ~0. Then by a theorem we proved, f cannot be

differentiable at ~0.

One way to see that f is not continuous is to use part (b). If f is continuous at ~0, then

given any M > 0, there is a δ > 0 such that |f(~x)| < M for all ~x with ‖~x‖ < δ. But we’ve

just shown in (b) that for any M > 0, no matter what δ > 0 we pick there is an ~x that

violates this, so this is a contradiction.

One can also show discontinuity directly. Here is a proof involving sequences: Define

~xk =

[
1/k3

1/k

]
for each natural number k. Then f( ~xk) = 1 for all k. The limits limk→∞ 1/k = 0

and limk→∞ 1/k3 = 0 are standard, and so limk→∞ ~xk = ~0 because the limit of a sequence

can be computed in each coordinate. Then if f is continuous, we must have limk→∞ f( ~xk) =

f(~0) = 0. But limk→∞ f( ~xk) = limk→∞ 1 = 1, a contradiction.
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