VECTORS AND
MATRICES

Linear algebra provides a beautiful example of the interplay between two branches of
mathematics, geometry and algebra. Moreover, it provides the foundations for all of our
upcoming work with calculus, which is based on the idea of approximating the general
function locally by a linear one. In this chapter, we introduce the basic language of vectors,
linear functions, and matrices. We emphasize throughout the symbiotic relation between
geometric and algebraic calculations and interpretations. This is true also of the last section,
where we discuss the determinant in two and three dimensions and define the cross product.

VECTORS IN R”
‘ A point in R” is an ordered n-tuple of real numbers, written (x1, ..., x,). To it we may
Xy
0 .x2 -
associate the vector x = | |, which we visualize geometrically as the arrow pointing
Xy

from the origin to the point. We shall (purposely) use the boldface letter x to denote both
the point and the corresponding vector, as illustrated in Figure 1.1. We denote by 0 thes
vector all of whose coordinates are 0, called the zero vector,

More generally, any two points A and B in space determine the arrow pointing from A

to B, as shown in Figure 1.2, again specifying a vector that we denote AB. We often refer

X1

Figure 1.1




Figure 1.2 Figure 1.3
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to A as the “tail” of the vector AB and B asits “head.” f A= | : | and B =
1)1 -y 2 bn

_—._). .
then AB is equal to the vector v = , whose tail is at the origin, as indicated

by — a,

Figure 1.2.
The Pythagorean Theorem tells us that when 7 = 2 the length of the vector x.

2 .2 ot
Xi +x3. A repeated application of the Pythagorean Theorem, as indicated in Fig
1.3, leads to the following |

Definition ~We define the length of the vector

X
X2

x=| |eR"  obe Ixl=\/d+xit... 4

X n

We say X is a unit vector if it has length 1, i.e., if ||x|| = 1.

There are two 9rgc1al algebraic operations one can perform on vectors, both of whic
have clear geometric interpretations,

. . s . x
Scalar multiplication:  If ¢ is a real number andx = : is a vector, then we defin
CXy
b CXs *n
¢X to be the vector . Note that cx points in either the same direction as x or th
€xy,

opposite direction, depending onwhether¢ > Qore < 0, respectively. Thus, multiplication
by the real number ¢ simply stretches (or shrinks) the vector by a factor of |¢| and reversés

the unit circle in &? the unit sphere in R

Figure 1.4

its direction when c¢ is negative. Since this is a geometric “change of scale,” we refer to the
real number ¢ as a scalar and the multiplication ¢x as scalar multiplication.
Note that'whenever x # 0 we can find a unit vector with the same direction by taking

X IX
x|l x|

as shown in Figure 1.4.
Given a nonzero vector X, any scalar multiple ¢x lies on the line through the origin and
passing through the head of the vector x. For this reason, we make the following

Definition We say two vectors x and y are parallel if one is a scalar multiple of the
other, i.e., if there is a scalar ¢ so thaty = ¢x or x = ¢y. We say x and y are nonparallel if
they are not parallel.

X y1 Xy +y
Vector addition: Ifx=| . |andy=| @ |,thenwedefinex+y=
Xn Yn Xp -+ Yo
To understand this geometrically, we move the vector y so that its tail is at the head of

x, and draw the arrow from the origin to its head. This is the so-called parallelogram*
law for vector addition, for, as we see in Figure 1.5, x +y is the “long” diagonal of the

Xn + Yoy
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ty=y+x . . fomAo
. wehave

This also foll_ows (i;snmediately from the algebraic definition because addition of real numb:

18 commutative. (See Exercise 12 for an exhaustive list of the properties of ad
esof

and scalar multiplication.) P e

5A7=x+m=x+%(y——x)=%(x+y).

In particular, the vector from the origin to the midpoint of AB is the average of the vectors X and y.
See Exercise 8 for a generalization to three vectors and Section 4 of Chapter 7 for more.

From this formula follows one of the classic results from high school geometry: The diagonals
of a parallelogram bisect one another. We’ve seen that the midpoint M of AB is, by virtue of the
formula (x), also the midpoint of diagonal OC. (See Figure 1,7.) &

Remark We emphasize here that the notions of vector addition and scalar rh'ulk
cation make sense geometrically for vectors in the form AB which do not nece’ssarﬂy"
their tails at the origin. If we wish to add A B to C_'?), we simply recall that ch /iys :
to 'any vector with the same length and direction, so we just translate C—:—D} so that C an
coincide; then the arrow from A to the point D in its new position is the sum XE +

Subtraction of one vector from another is easy to define algebraically. If x and y

as above, then we set B

=N y

X—y= ’
A

Xn = Yn x
As is the case with real numbers, we have the following interpretation of the differe 0
X —y: Itis the vector we add to y in order to obtain X; ie,

Figure 1.7

x-y)+y=x

It should now be evident that vector methods provide a great tool for translating theo-
rems from Euclidean geometry into simple algebraic statements. Here is another example.
Recall that a median of a triangle is a line segment from a vertex to the midpoint of the
opposite side.

Pictorially, we see that x -y is drawn, as shown in Figure 1.6, by putting its tail at y
its head at x, thereby resulting in the other diagonal of the paralielogram determined b
and y. N_C_)ES that if A and B.are points in space and we set x = 52 and y = E)—é, 1
Y — X = AB. Moreover, as Figure 1.6 also suggests, we have X —y = x + (—y). ‘

Proposition 1.1  The medians of a triangle intersect at a point that is two-thirds gf
the way from each vertex to the opposite side.

Proof We may put one of the vertices of the triangle at the origin, so that the picture
is as shown in Figure 1.8(a). Let x = —0—A>, y = —0—%, and let L, M, and N be the midpoints
of OA, AB, and OB, respectively. The battle plan is the following: We let P denote the
point 2/3 of the way from B to L, Q the point 2/3 of the way from O to M, and R the

’ ,," point 2/3 of the way from A to N. Although we’ve indicated P, Q, and R as distinct points
; in Figure 1.8(b), our goal is to prove that P = Q = R; we do this by expressing all the
; -y ——> — }
! vectors OP, 0Q, and OR interms of x and y.
- X=y=x+(-y) 0P =0B+BP=0B+2BL=y+2(lx—y)
Figure 1.6 =ty
gure 1. —> —
0Q=3%0M =% (3(x+y)) = 3(x+y); and




Figure 1.8

—
R=0A+ AR =04+ 2N =x+ 1y -% = Ix+ ly.
We conclude that, as desired, 0~l§ = 5_Q> = 5—1-3, and so P = Q = R. That is. if

‘ :
£l *

The astute reader might notice that we could have been more economical in th ~
proof. Suppose we merely check that the points 2/3 of the way down tw& of the mefi'
(say P and Q) agree. It would then follow (say, by relabeling the triangle slightly) th t1
same is tr.ue f’f a different pair of medians (say P and R). But since any t\%o yair .
have a point in common, we may now conclude that all three points are equal. .

EXERCISES 1.1

. 2 —1
1. Givenx = = i |
{3 J andy = [ : J, calculate the following both algebraically and geometrical

@ x+y (e y—x
(b) x—~y € 2x -y
é(ci)) );:+2)If (® x|
3X -+ 3y () x/l|x|
‘ 1 2 3
*2. Three vertices of a parallelogramare | 2 |,} 4 l,and | 1 |. What are all the possible positic
1 5

of the fourth vertex? Give your reasoning.

3. The origin is at the center of a regular polygon,
(a) Whatis the sum of the vectors to eachofthe v

ertices of th ? Gi Jusil i
What are the symmetries of the polygon?) epolvon? Give your onne (Hl"

(b) What is the sum of the vectors from one fixed vertex to each of th

your ressoning e remaining vertices?

4. Given AABC,let M and N be the midpoints of AB and AC, respectively. Prove that M N =

. . - s 20 Th =7 207 R

6. In AABC pictured in Figure 1.9,-lAD| = £|AB| and [[CE|| = £||CB|. Let Q denote the
midpoint of C D; show that X_Q;.“—— cA_>E for some scalar ¢ and determine the ratio ¢ = |} ;\—é /4 ZZ’ Il
In what ratio does CD divide AE?

C

A b B
Figure 1.9

7. Consider parallelogram ABCD. Suppose AE = —;-AB and DP = = DE. Show that P lies on the
diagonal AC. (See Figure 1.10.)

R

Figure 1.10

8. Let A, B, and C be vertices of a triangle in R>. Let x = 57\, y = 5§ and z = C’fC}‘ Show
that the head of the vector v = %(x +y 4 z) lies on each median of AABC (and thus is the point of
intersection of the three medians). It follows (see Section 4 of Chapter 7) that when we put equal
masses at A, B, and C, the center of mass of that system is given by the intersections of the medians
of the triangle.

9. (a) Letu, v e R? Describe the vectors X = su + tv, where s 4+ ¢ = 1. Pay particular attention
to the location of x when s > 0 and when ¢ > 0.

(b) Letu, v, w e R? Describe the vectors X == ru -+ sv -+ tw, where r + 5 +t = 1. Pay particular
attention to the location of x when each of r, s, and ¢ is positive.

10. Suppose X, y € R” are nonparallel vectors. (Recall the definition on p. 3.)

{a) Prove thatif sx 4ty = 0, then s = ¢ = 0, (Hint: Show that neither s # 0 nor ¢ # 0 s possible.)
(b) Prove thatif ax + by = ¢cx +dy,thena =cand b =d.

11. “Discover” the fraction 2/3 that appears in Proposition 1.1 by finding the intersection of two
medians. (Hint: A point on the line OM can be writien in the form 7(x + y) for some scalar ¢, and a
point on the line AN can be written in the form x + s( % y — x) for some scalar s. You will need to
use the result of Exercise 10.)

12. Verify both algebraically and geometrically that the following properties of vector arithmetic
hold. (Do so for n == 2 if the general case is too intimidating.) : '
(a) Forallx,ye R, x+y=y-+Xx

(b) Forallx,y,zeR", (x+y)+z=x+(y+2).

(¢) 0+x=xforallx e R".




(e) Foralle,d e Randx e R"

(f,)k Forallc e R and‘x, yeRt ¢
(g) Foralle,d e Randxe R (c+d)x = cx +
(h) Forallx e R", Ix =x.

n » . v . :
13. (a) Usm_g only the properties listed in Exercise 12, prove that for any x € R”
(It often surprises students that this is a consequence of the properties in Exercise

(b) Using the result of part a, prove that (—1)X = —x,
proof of part a!)

, we have Ox
12.)

(Be sure that you didn’t use this factin v

-2 DOT PRODUCT

We discuss next one of the crucial constructions in linear al

gebra, the dot product x -
two vectors x,y € R”. By way of motivation, let’ .

s recall some basic results from pla
| x by : |
eometry. = = ints i i
geometry. Let P [ 5 J and Q = [ . J be points in the plane, as pictured in Figure

Figure 2.1

Then we observe that when ZP O

Q is aright angle, AO AP is similar to A '
X2/Xx1 = ~y1/y2, whence x;y; + lowing "

X2y2 = 0. This leads us to make the following
Definition Given vectors X,y € R?, define their dor product
| XY =x +x2ys.
More generally, given vectors x, y € R", define their dot product
XYy =xyi+xoy+ - +x,.

We know that when the vectors x and y € R?

By starting with the algebraic properties of the do
of geometry out of it,

are perpendicular, their dot product is 0
t product, we are able to get a great dea

Proposition 2.1 The dor product has the following properties:

1. x-y=y xforallx, Y € R* (dot product is commutative),

2. x-x:[]x[lzanndx-x=O<:==:>x=:0;

3 (ex) - y=c(x-y) forallx, yeR andc e R;

4 x - (y+z)=x-y+x- Zforallx,y,z € R” (the distributive property).

2. Since multi-

roof In order to simplify the notation, we give the proof with n
n of real numbersis commufative, we have

X+ Y = X Y+ Xoy2 = ViX1 + yaXy =Y - X.

~ The square of a real number is nonnegative and the sum of nonnegative numbers is nonneg-
ative; sox - X = x% + x% > 0 and is equal to 0 only when x; = x, = 0. The next property

follows from the associative and distributive properties of real numbers:
(ex) -y = (cx1)y1 + (cx2)y2 = c(x1y1) + c(X2y2) = c(x1y1 + x2y2) = (X - y).
The last result follows from the commutative, associative, and distributive properties of
real numbers:
X (y+2) =1y + 21) + 202 + 22) = X131 X120+ Xoya + 0222
= Xy + X))+ Fon)=xy+x-z. B

Corollary 2.2 |x +y|> = x> +2x -y + |yl

Proof Using the properties repeatedly, we have
Ix+yl?=x+y) ®+Y) =xX-X+X-y+y-X+y ¥y
= |xI® +2x -y + |yl®,

as desired. @

The geometric meaning of this result comes from the Pythagorean Theorem: When x
and y are perpendicular vectors in R?, then we have [|x + y||? = |x||> + [ly|%, and so, by
Corollary 2.2, it must be the case that x - y = 0. (And the converse follows, too, from the
converse of the Pythagorean Theorem.) That is, two vectors in R? are perpendicular if and
only if their dot product is 0.

Motivated by this, we use the algebraic definition of dot product of vectors in R” to
bring in the geometry. In keeping with current use of the terminology and falling prey to
the penchant to have several names for the same thing, we make the following

Definition We say vectors x and y are orthogonal if x -y = 0.

Armed with this definition, we proceed to a construction that will be important in much
of our future work. Starting with two vectors x, y € R", where y # 0, Figure 2.2 suggests
that we should be able to write x as the sum of a vector, x!, that is parallel to y and a vector,
x*, that is orthogonal to y. Let’s suppose we have such an equation:

where
.

x:X” +X'L,

x! is a scalar multiple of y and x* is orthogonal to y.

To say.that x! is a scalar multiple of y means that we can write x| = cy for some scalar c.
Now, assuming such an expression exists, we can determine ¢ by taking the dot product of
both sides of the equation with y:

x-y=&+x)y=6"p+at-y=xy=(y) y=clyl®




To double'—checkk,"we compute x = 0;asitshould be

Figure 2.2

This means that

lyl?”

The vector x! is called the projection of x onto'y,

and

The fastidious reader may be puzzled by the logic here. We have apparently assu
that we can write X = x! + x1 in order to prove that we can do so. Of course, as it sta
this is not fair. Here’s how we fix it. We now define .

SO X” =

Suppose x, y € R%. We shall see next that the formula for the projection of X onto y
enables us to calculate the angle between the vectors x and y. Consider the right triangle
in Figure 2.3; let # denote the angle between the vectors x and y. Remembering that the
cosine of an angle is the ratio of the signed length of the adjacent side to the length of the
hypotenuse, we see that

Xy
signed length of x| cfly| W“y”

lengthofx -~ x| x|

This, then, is the geometric interpretation of the dot product:

Xy

Iyl2"

written projy x.

X'y

Iyl

cos

[x-y = Ixlllylicosé.]

=XV © Will this formula still make sense even when X,y € R"? Geometrically, we simply restrict
Tl yii? our attention to the plane spanned by x and y and measure the angle 6 in that plane, and so
1 X-y we blithely make the :
XT =X - —y
Iyl

Obviously, x! + x* = x and x! is a scalar multiple of ¥. All we need to check is that x

in fact orthogonal to y. Well,
X -

(X BTE

as required. Note, moreover, that x!

X‘L-

is the unique

x—xh.y=0,
& EXAMPLE 1
2 -1
Letx={ 3 [andy = 1 |. Then
1 1
~1
3 i
. 1 1
=Y L J L 1
Iyl? ik
1
1
2 ~1 8
2 3
S - -
=13 -zl =11
1 1 4

) y=x-y— 3
YyY=XxX'y - ——y.y=x.
Ry Yy =Xy

Definition Let x and y be nonzero vectors in R*. We define the angle between them
to be the unique  satisfying 0 < 6 < 7 so that
.
o xy I
lyl?

multiple of y that satisfies the equat.

IylP=x-y-x.y=

Figure 2.3

Since our geometric intuition may be misleading in R”, we should check algebraically
that this definition makes sense. Since |cos8| < 1, the following result gives us what is

L and needed.

Proposition 2.3 (Cauchy-Schwarz Inequality) Ifx.y € R", then
x-yl < lIxliyll

Moreover, equality holds if and only if one of the vectors is a scalar /ﬁultiple of the other:




8O = lIx+1y[? = |x|? + 2x - y + 2y

takes its minimum at #, = ——“—y—%. The min’imum value
&y (xy)?
8(to) = [Ix||* — 2 220
Iyl? yl?

is necessarily nonnegative, so

x-y)* < [x|*ly)>?,

and, since square root preserves inequality,

[x-yl < lx)iyl,

as cllesirec.l. qua]ity holds if and only if x -+ ty = 0 for some scalar 7. "(See Exercise 9
a discussion of how this proof relates to our formula for projyx above.) H

One of the most useful applications of this result i
tells us that the sum of the lengths of two sides of a

of the third.

Corollary 2.4 (Triangle Inequality) For any vectors x, Yy € R", we have ||x +y

Il + Iyl

)2 — &3

B e —

Proof By Corollary 2.2 and Proposition 2.3 we have

I+ y17 = IxI? + 2% -y + lyI2 < x> + 2|x] Iyl + 1y = Cxl+ fy 2.

Since square root preserves inequality, we conclude that Ix+ylf < Ixlf + lyll, as desﬁ

consider

Ps

yl?

s the famed friangle inequality, wl
riangle cannot be less than the le

P X = pi1x| + paxs + p3x3 + paxs+ psxs

is th’é total cost of producing the massive quantity of cookies. (To be realistic, we might
also want to include xg as the number of hours of labor, with corresponding hourly wage
ps.) We will return to this interpretation in Section 4.

1. For each of the following pairs of vectors x and y, calculate x - y and the angle 6 between the
vectors. _ . - - -

(@) x= 2 -7 : .
=l s|Y=| , € x=| -1 [,y=1{3
-z - - 6 2

2 -1 - -
(b)X: 1 Y = 1 3 -1
i i M x=| -4 |y=] o
o) x = i y = 7 5 1
g | —4 S

L ° L7 1 1

1 5 ® 1 -3

X = Y =

@x=| 4|y=]1 S I L
.._—3 3 _l 5

. For each pair of vectors in Exercise 1, calculate proj,x and proj,y.

2
*3, Find the angle between the long diagonal of a cube and a face diagonal.

4. Find the angle that the long diagonal of a 3 x 4 x 5 rectangular box makes with the longest edge.
5

. Supposex,y € R*, [ix]| = 2, llyll = 1, and the angle 8 between x and y is 6 = arccos(1/4). Prove
that the vectors x — 3y and x + y are orthogonal.

6. Suppose X, y, z € R? are unit vectors satisfying x + y + 2 = 0. What can you say about the angles
between each pair?

1 0
7. Lete; = | 0 |,es=1| 1 {,ande; = | 0 | be the so-called standard basis vectors for R3, Let
0 0

x € R? be a nonzero vector. For i = 1,2, 3, let §; denote the angle between x and ¢;. Compute
cos? By + cos® 8, + cos? 6,

1
1

w

8. Letx= |l |andy= € R", Let 6, be the angle between x and y in R". Find lim 6,.
) . =00

.1 n
(Hint: You may need to recall the formulas for 1 +2+ .- +4n and 12 + 2% + ... + n? from your

number of pounds of butter needed to produce a certain massive quantity of chocolate ch1 beginning calculus course.)




PfOJyX° - . - ] rectal ‘box has length ¢, what is the greatest the
10. ‘Use vector methods to prove that a parallelogra is a rectangle if and only if its diagona > ~ . 0x does the maximym ocour]
the same length. L ‘ k 19. Givean altematlve proof of the Cauchy -Schwarz inequality, as follows. Leta

and deduce from [[pX — ay||® = 0 that x -y < ab. Now how do you show that Ix -

11, Use the fundamental ptoperties of the dot product to prove that

I+ 311 + x = y12 = 2 (41 + Iy ) .
Interpret the result geometrically.

320 (a) Letx and y be vectors with x| = ||y|l. Prove that the vectorx -l— y btsects the angle between
xandy.

; (b) More generally, if x and y are arbitrary nonzero vectors, let a = I}l and b = |ly|l. Prove that
_the.vector bx -+ ay bisects the angle between x and y.

21. Use vector methods to prove that the diagonals of a parallelogram bisect the vertex angles if and
only if the parallelogram is a rhombus.

22 leen AABC with D on BC as shown in Figure 2.6. Prove that 1f AD blsects ZBAC, then
HBDH/HCDII =_]_I_>ABI|/|1ACH. (Hint: Use Exercise 20b. Let x = AB and y = AC give two
expressions for AD in terms of x and y and use Exercise 1.1.10.)

*12. Use the dot product to prove the law of cosines: As shown in Figure 2.4,
¢* = a® 4+ b — 2abcosé.

B

C C

Figure 2.4

13. Use vector methods to prove that the dia
gonals of a parallelogram are orthogonal if
the parallelogram is a rhombus (i.e., has all sides of equal length). ¢ 1 and

A L 2
#“14. Use vector methods to prove that a triangle inscribed in a circle and having a diameter as o e 26
its sides must be a right triangle. (Hint: See Figure 2.5.) '

23. Use vector methods to prove that the angle blsectors_czﬁ a triangle have a common point. (Hint:
leen AOAB, letx = OA y = OB a= |[0A|| b=|0OB|,andc¢ = IIABlt If we define the point
P by 0P = o [MC —L . (bx + ay), use Exercise 20b to show that P lies on all three angle bisectors.)

24. Use vector methods to prove that the altitudes of a triangle have a common point. Recall that

Geometric challenge:  More generally
, given two points A and B in the pl
of points X so that ZAX B has a fixed measure? plase, whitis it

¥y altitudes of a triangle are the lines passing through a vertex and perpendicular tg_the opposite side.
(Hint: See Figure2.7. Let gt_))e the point of i 1ntersect10n of the altitude from B to O A and the altitude
o <>
o % from A to O B. Prove that OC is orthogonal to AB. )
B
Figure 2.5 ;L—l
R 3
n ! oy LT A
15. (a) Lety e R, Ifx -y = 0forall x € R", then prove that y = 0. L ‘O
(b) Supposey,z € R"andx -y = x -z for all x € R". What can you conclude? L "\
16 Itx=| "' | eRre, setp(x) = | c ’:P B
X2 Xy :':

(@) Check that p(x) is orthogonal to x; indeed, p(x) is obtained by rotating x an angle /2 coun Figure 2.7

clockwise.
25. Use vector methods to prove that the perpendicular bisectors of the sides of a triangle mtersect '
ina ;391;1( as follows. Assume the triangle O AB has one vertex at the origin, and let X == OA and
y = OB.

(b) Givenx,y e R? prove that x - p(y) = —p(x) - y. Interpret this statement geometrically.

¥17. Prove that for any vectors x, y € R”, we have ||x|| — Iyll < lix ~ yll. Deduce that [||x|| — [ly||
lIx ~yli. (Hint: Apply the result of Corollary 2.4 directly.) '




S 20y .
(b) Show that z lies on the perpendicular bisector of A B, ‘(Hint: What i3 the dot produc
1x+y) withy — x7) ‘
26. Let P be the intersection of the medians of AOARB {(see Proposition 1.1), Q the intersect
its altitudes (see Exercise 24), and R the intersection of the perpendicular bisectors of its side

Exercise 25), Show that P, Q, and R are collinear and that P is two-thirds of the way from
Does the intersection of the angle bisectors (see Exercise 23) lie on this line as well?

3 SUBSPACES OF R*

As we proceed in our study of “linear objects,” it is fundamental to concentrate onsu
of R" that are generalizations of lines and planes through the origin. '

Definition A set V C R (a subset of R™) is called a subspace of R" if it sat
the following properties:
1. 0 ¢ V (the zero vector belongs to V);
2. wheneverve Vande € R, wehavecv € V (V is closed under scalar multipli
tion);
3. wheneverv,we V,wehavev+we V (V is closed under addition).

EXAMPLE 1
Let's begin with some familiar examples.

a. The trivial subspace consisting of just the zerc vector 0 € R" is a subspace since c0 0
any scalar ¢ and 0 + 0 = 0.

b. R” itself is likewise a subspace of R",

c. Fix a nonzero vector u € R”, and consider

= {x € R": x = tu for some r € R}.

‘We check that the three criteria hold:

1. Setting z = 0, we see that 0 « £,

2. IfvetfandceR, thenv = tuforsomet e R, and s0 cv = c(tu) == (ct)u, which
again a scalar multiple of u and hence an element of .

3. Ifv,w e £ this means that v = su and w = tu for some scalars s and #. Thenv 4w
Su+tu=(s+)u,s0v+we £ as needed.

£ s called a line through the origin.

d. Fix two nonparallel vectors u and v € R”. Set

P=IxeR": = su+ ¢v for some s, r € R},

€.

VVZS'etting s:and't = 0; we see that 0-==Ou + Ov; s0 0 & P.
Suppose x € P'and ¢ € R Then x = su + rv for some scalars s and ¢, and ¢x =
clsu - tv) = (cHu+ (et)v, so cx € P as well,
3. Suppose x,y € P. This means that X = su + tv for some scalars s and ¢, and y =
s'a + ¢'v for some scalars 5" and ¢/, Then

X+Y=(Eu+v)+ @Gu+v) = +sHu+ ¢+ )v,

sox +y € P, as required.

Figure 3.1

Fix a nonzero vector A € R”, and consider
V={xeR A -x=0).

V consists of all vectors orthogonal to the given vector A, as pictured in Figure 3.2. We
check once again that the three criteria hold:

1. Since A-0 =0, we know that@ e V.
2. Supposeve Vandc € R Then A (cv) =c(A-v)=0,s0¢cve V.

Figure 3.2




Thus, V is a subspace of R". We call V a. hyg}erj)lane in R, ha9ing normal ve . U |
More generaily, givenany collection of vectors Ay, .. i A, € R, the setof solution
homogeneous system of linear equations . '

. 'A1~X=0, Ag'X:O, Py AmX=O

forms a subspace of R”,

Figure 3.4
EXAMPLE 2

Let’s consider next a few subsets of R?, as pictured in Figure 3.3, that are not subspaces,

(as illustrated in Figure 3.4) is called a linear combination of vy, ..., v;. The set of all
¥

.linear combinations of vy, ..., v, is called their span, denoted Span(vy, ..., vi).

a S= eR:xy=2x;+1}isnota subspace. All three criteria fail, buti
X2

topointout 0 ¢ S.

: Every vector in R" can be written as a linear combination of the vectors
b, §=1{" eR*:xx, =0} isnota subspace. Each of the vectors v = T - - A
= 1 0 0
‘ 0 1 0
lies in S, and yet their sum v + w = does not. .
! e = 1| 1|, &= |, ..., €=
* 2 : 0f., - 0 0 0
c. S= €R*: x>0} isnota subspace. The vector v = | liesin S, and y 0 0
X2 4 | 0] i i
negative scalar multiple of it, e.g., (—2)v = I does not. The vectors ey, .. ., e, are often called the standard basis vectors for R*. Obviously, given
- the vector
X1
x=| ' 1, we have X = x1e; + xz€y + -+ + x,€,.
Xy
Proposition 3.1 Let vy,...,vy € R". Then V = Span(vy, ..., V;) is a subspace
of R,
(a) (b) ‘ N
not subspaces of R Proof We check that all three criteria hold. |
Figure 3.3 1. To see that 0 € V, we merely take ¢; = ¢3 = - - = ¢ = 0. Then (by Exercise
L1 evi+evat -+ v =0+ F+0v =04+ +0=0.
Given a collection of vectors in R", it is natural to try to “build” a subspace from the 2. Suppose v € V and ¢ € R. By definition, there are scalars ¢, ..., ¢; so that
We begin with some crucial definitions.

V = C1Vy + ¢2Vy + -+ - + ¢ Vi. Thus,

Definition Letv,,...,v; € R". If ¢y, ..., ¢, € R, the vector cv =clervy +eavat o+ ave) = (ce)vi + (ce)va + -+ (co) Vi,

ich is aoai i ination of vy, :.., vx, 80 ¢cv € V, as desired.
V=C1Vi+ vy + -+ v which is again a linear combi Iriees Vi, )




adding, we obtain

V+W=(c;Vi+ -+ avp) + ([divi + -+ devy)
= (cp -+ d)Vy+ -+ (cr + dp) vy,

. which is again a linear combination of vy, . . ., v;, hence an element of V.

This completes the verification that V is a subspace of R*. B

Remark Let V C R” be a subspace and let vy, ...,v; € V. We say that vy;
span V if Span(vy, ..., v;) = V. (The point here is that every vector in V must be a lin
combination of the vectors vy,...,v..) As we shall see in Chapter 4, it takes at I'e
vectors to span R”; the smallest number of vectors required to span a given subspace
be a measure of its “size” or “dimension.”

¥ EXAMPLE 3
The plane.
I 2
Pr=qsf -1 [+t 0 ]:s1eR
2 1

is the span of the vectors

and vy =10

[ 8]

and is therefore a subspace of R®. On the other hand, the plane

1 2
Py = O({+s] -1 {+2t]0|:5¢teR
2 1

-

is not a subspace. This is most easily verified by checking that 0 ¢ P,, for 0 € P, precisely when
can find values of s and ¢ so that

0 I 1 2
O =0 |+s{~1]|+2]0
0 0 2 1

This amounts to the system of equations:

which we easily see has no solution.

25 + ¢t

il

Oy

A word of warning here: We might have expressed P; in the form

1
~1
2

2
0
1

1
1
-1

+ s +t s, reRy,

so that, despite the presence of the “shifting” term, the plane may still pass through the origin.

There are really two different ways in which subspaces of R” arise: as being the span
of a collection of vectors (the “parametric” approach) or as being the set of solutions of a
(homogeneous) system of linear equations (the “implicit” approach). We shall study the
connections between the two in detail in Chapter 4.

-1
As the reader can verify, the vector A = 3 | is orthogonal to both the vectors that span the plane
)

P, given in Example 3 above. Thus, every vector in Py is orthogonal to A, and we suspect that
Pr={xeR:A x=0=xeR:—x +3x0+2x =0

Strictly speaking, we only know that every vector in Py is a solution of this equation. But note that
if x is a solution, then

X1 3xp+2x3 3 2 1 2
X=1]x |=]| x =xs ] Ll +x3 |0 =(Cx)|-1|+Cx2+x3){0],
X3 X3 0 1 2 1

sox € P, and the two sets are equal.’ Thus, the discussion of Example le gives another justification
that P is a subspace of R,
On the other hand, one can check, analogously, that

Py == {XGR3 T —x1 4+ 3%y + 2x3 = —1},

and so clearly 0 ¢ P, and P, is not a subspace. It is an affine plane parallel to P;.

Definition Let V and W be subspaces of R”. We say they are orthogonal subspaces
if every element of V is orthogonal to every element of W, i.e., if

v-w=0 foreveryve Vandeverywe W.

1Ordinarily, the easiest way to establish that two sets are equal is to show that each is a subset of the other.




Figure 3.5

As indicated in Figure 3.5, given a subspace V C R”, define
Vi=xeR':x - v=0 for every v € V}.

V+ (read “V perp”) is called the orthogonal complement of V 2

Proposition 3.2 V' is also a subspace of R".

Proof We leave this to the reader in Exercise 4. B

EXAMPLE 5

Let V.=Span | 2 | |. Then V* is the plane W = {x € R®: x; + 2x; + x3 = 0}. Now

the orthogonal complement of W? We suspect it is just the line V, but we will have to wai
Chapter 4 to have the appropriate tools, < i

If V and W are orthogonal subspaces of R”, then certainly W ¢ V+ (why?). Ofco
W need not be equal to V+: Consider, for example, the x;-axis and the x,-axis in R?

EXERCISES 1.3

*1. Which of the following are subspaces? Justify your answer in each case.
@) (xeR:x +x =1}
a
M) xeR:x=1| » for some a, b € R}
a+b

(© {xeR:x +2x <0}

d) xeR:xl+xi+xd=1)

€ {xeR:x2+xl+xi=0)

®) xeR :x2+x2+4+x2=—1)

%In fact, both this definition and Proposition 3.2 work just fine for any subset V ¢ R".

for some i€ R}

1
+t 2 | for some 5, t € R}

for some 5,t € R}
1

2

1

1 -1

D {xeR:x= 4 |+

™., Criticize the following argument: By Exercise 1.1.13, for any vector v, we have Ov = 0. So the
_Airst criterion for subspaces is, in fact, a consequence of the second criterion and could therefore be
omitted.

"*"3. Suppose X, v, ..., v, € R" and x is orthogonal to each of the vectors vy, ..., v;. Prove that x is
orthogonal to any linear combination ¢, v + ¢2v2 + « - - + ¢ vy

4. Prove Proposition 3.2.

5. Given vectors vy, ..., v, € R", prove that V = Span(vy, ..., v;) is the smallest subspace con-
taining them all. That is, prove that if W < R" is a subspace and vy, ..., v, € W, then V C W.

6. (a) Let U and V be subspaces of R". Define
UNV=xeR :xeUandx e V}.
Prove that U N V is a subspace of R". Give two examples,
b) LUUV ={xeR":xeUorx e V}asubspace of R"? Give a proof or counterexample.
(c) Let U and V be subspaces of R". Define
U+V={xeR':x=u+viorsomeue U andve V]
Prove that U + V is a subspace of R". Give two examples.
7. Letvy, ..., v, € R" and let v € R", Prove that
Span(vy, ..., Vi) = Span(vy, ..., Vi, V) < Vv & Span(vy, ..., Vg).
8. Let V < R” be a subspace. Prove that V N V4 = {0}.
9, Suppose U, V C R” are subspaces and U C V. Prove that V* ¢ U*.
10. Let V C R” be a subspace. Prove that V C (V1)*. Do you think more is true?

11. Suppose V = Span(vy,...,v;) C R*. Show that there are vectors wi,...,w; € V that are
mutually orthogonal (i.e., w; - w; = 0 whenever{  J) that also span V. (Hint: Let w; = v,. Using
techniques of Section 2, define w;, so that Span(w;, w;) = Span(vy, v,) and w; - w, = 0. Continue.)
12. Suppose U and V are subspaces of R*. Prove that (U + V)* = U* N V+. (See the footnote on
p.21)

INEAR TRANSFORMATIONS AND MATRIX ALGEBRA

‘We are heading toward calculus and the study of functions. As we learned in the case of one
variable, differential calculus is based on the idea of the best (affine) linear approximation
of a function. Thus, our first brush with functions is with those that are linear.




