## Publications

(with G. Bellamy, T. Schedler, J. T. Stafford, and M. Wemyss),``Noncommutative algebraic geometry", Mathematical Sciences Research Institute Publications 64, Cambridge University Press, Cambridge, 2016. Preliminary version of Rogalski's chapter available at www.arxiv.org, arXiv:1403.3065.

(with S. Sierra and J. T. Stafford), "Ring-theoretic blowing down: I", preprint. To appear in J. Non-commut. Geom. Available at www.arxiv.org, arXiv:1603.08128.

(with M. Reyes and J. J Zhang), "Skew Calabi-Yau triangulated categories and Frobenius Ext-algebras",
Trans. Amer. Math. Soc. **369** (2017), no. 1, 309--340.
Preliminary version available at www.arxiv.org, arXiv:1408.0536.

(with J. Bell), "Z-graded simple rings",
Trans. Amer. Math. Soc. **368** (2016), no. 6, 4461--4496.
Preliminary version available at www.arxiv.org, arXiv:1310.5406.

(with S. Sierra and J. T. Stafford), "Classifying orders in the Sklyanin algebra",
Algebra Number Theory **9** (2015),
no. 9, 2055--2119. Preliminary version available at www.arxiv.org, arXiv:1308.2213.

(with S. Sierra and J. T. Stafford), "Noncommutative blowups of elliptic algebras", Algebr. Represent. Theory **18**, (2015), no. 2, 491--529.
Preliminary version available at www.arxiv.org, arXiv:1308.2216.

(with M. Reyes and J. J Zhang), "Skew Calabi-Yau algebras and homological identities", Adv. Math. **264**, (2014), 308--354.
Preliminary version available at www.arxiv.org, arXiv:1302.0437.

(with S. Sierra and J. T. Stafford), "Algebras in which every subalgebra is noetherian", Proc. Amer. Math. Soc. **142**, (2014), no. 9, 2983--2990.
Preliminary version available at www.arxiv.org, arXiv:1112.3869.

(with J. Bell), "Free subalgebras of division rings over uncountable fields", Math Z. **277**, (2014), no. 1-2, 591--609.
Preliminary version available at www.arxiv.org, arXiv:1112.0041.

(with J. Bell), "Free subalgebras of quotient rings of Ore extensions", Algebra Number Theory **6**, (2012), no. 7, 1349--1368.
Preliminary version available at www.arxiv.org, arXiv:1101.5829.

(with S. Sierra), "Some projective surfaces of GK-dimension 4", Compositio Math., **148**, (2012), no. 4, 1195--1237.
Preliminary version available at www.arxiv.org, arXiv:1101.0737.

(with J. J. Zhang), "Regular algebras of dimension 4 with 3 generators", New trends in noncommutative algebra, Contemp. Math., **562**, (2012), 221--241.
Preliminary version available at www.arxiv.org, arXiv:1101.1998.

####
We wrote some Maple programs which were used in the calculations in the preceding paper. We
make these programs freely available here; click on the following link:

Maple programs for "Regular algebras of dimension 4 with 3 generators"

"Blowup subalgebras of the Sklyanin algebra". Adv. Math., **226**, (2011), no. 2, 1433--1473. Preliminary version
available at www.arxiv.org, arXiv:0912.2304.

(with J. Bell and S. J. Sierra), "The Dixmier-Moeglin equivalence for twisted homogeneous coordinate rings", Israel J. Math.**180** (2010), no. 1, 461--507. Preliminary version available at www.arxiv.org, arXiv:0812.3355.

"GK-dimension of birationally commutative surfaces", Trans. Amer. Math. Soc. **361** (2009), no. 11, 5921--5945. Preliminary version available at
www.arxiv.org, arXiv:0707.3643.

(with J. T. Stafford), "Naive noncommutative blowups at zero-dimensional schemes", J. Algebra **318** (2007), no.
2, 794--833. Preliminary version available at www.arxiv.org, arXiv:math/0612658.

(with J.T. Stafford), "Naive noncommutative blowups at zero-dimensional schemes: An Appendix". This is a brief (unpublished) appendix to the preceding paper containing full proofs of a few of the more peripheral results. pdf

(with J. T. Stafford), "A Class of Noncommutative Projective Surfaces", Proc. Lond. Math. Soc. **99** (2009), no. 1, 100--144.
Preliminary version available at www.arxiv.org, arXiv:math/0612657.

(with J. J. Zhang), "Canonical Maps to Twisted Rings'', Math. Z. **259** (2008), no. 2, 433--455.
Preliminary version available at www.arxiv.org, arXiv:math/0409405.

(with Z. Reichstein and J. J. Zhang), "Projectively Simple Rings'', Adv. Math, **203** (2006), no. 2, 365-407. Preliminary version available at
www.arxiv.org, arXiv:math/0401098.

(with D.S. Keeler and J. T. Stafford), "Naive Noncommutative Blowing up'', Duke Math J. **126** (2005),
no. 3, 491-546. Preliminary version available at www.arxiv.org, arXiv:math/0306244.

"Idealizer Rings and Noncommutative Projective Geometry,'' J. Algebra **279** (2004),
no. 2, 791-809. Preliminary version available at www.arxiv.org, arXiv:math/0305002.

"Generic Noncommutative Surfaces,'' Adv. Math **184** (2004), no.2, 289-341. Preliminary version
available at www.arxiv.org, arxiv:math/0203180.

"Examples of Generic Noncommutative Surfaces", University of Michigan PhD thesis. This contains more background and some extra results not included in the paper "Generic Noncommutative Surfaces" above. pdf

© 2015 Daniel Rogalski

Template design by Andreas Viklund