Instructions:

• Do not open the exam until you are instructed to do so.

• Write your name and student ID number on the front page of the exam.

• Write your name and student ID number at the top of every page of the exam.

• Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the page.

• If you need more paper, ask one of the proctors and we will provide it.

• There are extra pages at the end of the exam for scratch work.

Math 20B - Midterm 1 - 10/24/2018

Name & Student ID: ___

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Sam the snake slithers sneakily south at a speed of

\[s(t) = 1 + \frac{1}{1 + t} \sin (\ln(1 + t)) \]

meters per second, where \(t \) is the number of seconds which have passed since sunset.

(a) (3 points) Set up an integral (but do not evaluate it) which calculates Sam's displacement over the first \(T \) seconds after the sun sets.

(b) (7 points) Calculate Sam's displacement over the first 10 seconds after the sun sets.
2. (a) (5 points) Find the antiderivative:

\[\int \tan(x) \, dx. \]

Show your work!

(b) (5 points) Compute the definite integral:

\[\int_{0}^{3} xe^{x} \, dx. \]
3. (10 points) Find the volume of the solid of revolution given by rotating the region bounded by \(y = 1 + x, y = 3 - x, \) and \(y = 1 \) around the \(x \)-axis.
4. (10 points) Find the area between the polar curve $r = f(\theta)$ and the origin, for $0 \leq \theta \leq \pi$.

Here

$$f(\theta) = \sqrt{\frac{\theta}{1 + \theta}}.$$
Scratch Paper.