PRACTICE FOR FINAL EXAM

Problem 1. Suppose an object has acceleration at time t (in seconds) given by

$$
a(t)=8 t-t^{2}\left(\text { in } m / s^{2}\right) .
$$

Find the net change in velocity of the object between $t=1$ and $t=4$.
Problem 2. Compute the antiderivative

$$
\int \sec ^{2}(x) \tan (x) d x
$$

Problem 3. Consider the region enclosed by the curves

$$
y=x^{2}+2 \text { and } y=10-x^{2}
$$

Find the volume of the solid of revolution obtained by rotating the region around the x-axis.
Problem 4. Compute the antiderivative

$$
\int \frac{\ln (x)}{x^{2}} d x
$$

Problem 5. §11.4 \#20.
Problem 6. Compute the antiderivative

$$
\int \cos ^{498}(x) \sin ^{3}(x) d x
$$

Problem 7. Compute the antiderivative

$$
\int \frac{1}{\sqrt{9-y^{2}}} d y
$$

Problem 8. Compute the antiderivative

$$
\int \frac{3 x}{(x+1)\left(x^{2}+x\right)} d x
$$

Problem 9. Evaluate the improper integral

$$
\int_{-\infty}^{0} e^{-3 x} d x
$$

Problem 10. Does the integral

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x
$$

converge or diverge?
Problem 11. Evaluate the series

$$
\sum_{n=2}^{\infty}\left(-\frac{4}{9}\right)^{n}
$$

Problem 12. Does

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n+9}
$$

converge or diverge?
Problem 13. Does

$$
\sum_{n=2}^{\infty} \frac{1}{n^{3 / 2} \ln (n)}
$$

converge or diverge?
Problem 14. Does

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{1 / 3}}
$$

converge or diverge?
Problem 15. Find the interval of convergence for the power series

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n^{5}} .
$$

Problem 16. Find a a power series for the function

$$
f(x)=\frac{2 x}{1+x^{2}}
$$

Problem 17. Find the Maclaurin series for the function $g(x)=x^{2} e^{x^{2}}$. Find its radius of convergence.
Problem 18. Find the Maclaurin series for the function $h(x)=\arctan \left(x^{2}\right)$. Find its interval of convergence.

