Problem 1: 39

Problem 2: $\frac{1}{2} \sec^2 x + C$ or $\frac{1}{2} \tan^2 x + C$ (both work) **Problem 3:** 256 π **Problem 4:** $-\frac{\ln x}{x} - \frac{1}{x} + C$ **Problem 5:** 4π **Problem 6:** $-\left(\frac{\cos^{499} x}{499} - \frac{\cos^{501} x}{501}\right) + C$ **Problem 7:** $\sin^{-1}(\frac{x}{3}) + C$ **Problem 8:** $-\frac{3}{x+1} + C$ **Problem 9:** The integral diverges.

Problem 10: The integral converges.

Problem 11: $\frac{16}{117}$

Problem 12: The series diverges.

Problem 13: The series converges.

Problem 14: The series converges.

Problem 15: The series converges on the interval [-1, 1].

Problem 16: $f(x) = 2 \sum_{n=0}^{\infty} (-1)^n x^{2n+1}$ Problem 17: $x^2 e^{x^2} = \sum_{n=0}^{\infty} \frac{x^{2n+2}}{n!}$ converges on $(-\infty, \infty)$. Problem 18: $\arctan(x^2) = 2 \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+2}}{4n+2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+2}}{2n+1}$ converges on [-1, 1].